${\mathcal{O}(r^N)} $ two-form asymptotic symmetries and renormalized charges

Matteo Romoli
{"title":"${\\mathcal{O}(r^N)} $ two-form asymptotic symmetries and renormalized charges","authors":"Matteo Romoli","doi":"arxiv-2409.08131","DOIUrl":null,"url":null,"abstract":"We investigate $ \\mathcal{O}\\left( r^N \\right) $ asymptotic symmetries for a\ntwo-form gauge field in four-dimensional Minkowski spacetime. By employing\nsymplectic renormalization, we identify $ N $ independent asymptotic charges,\nwith each charge being parametrised by an arbitrary function of the angular\nvariables. Working in Lorenz gauge, the gauge parameters require a radial\nexpansion involving logarithmic (subleading) terms to ensure nontrivial angular\ndependence at leading order. At the same time, we adopt a setup where the field\nstrength admits a power expansion, allowing logarithms in the gauge field\nexpansions within pure gauge sectors. The same setup is studied for\nelectromagnetism.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"2016 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate $ \mathcal{O}\left( r^N \right) $ asymptotic symmetries for a two-form gauge field in four-dimensional Minkowski spacetime. By employing symplectic renormalization, we identify $ N $ independent asymptotic charges, with each charge being parametrised by an arbitrary function of the angular variables. Working in Lorenz gauge, the gauge parameters require a radial expansion involving logarithmic (subleading) terms to ensure nontrivial angular dependence at leading order. At the same time, we adopt a setup where the field strength admits a power expansion, allowing logarithms in the gauge field expansions within pure gauge sectors. The same setup is studied for electromagnetism.
${mathcal{O}(r^N)} $ 双形式渐近对称性和重正化电荷
我们研究了四维闵科夫斯基时空中两形式规量场的$ \mathcal{O}\left( r^N \right) $渐近对称性。通过采用交错重正化,我们确定了 $ N $ 独立渐近电荷,每个电荷由角变量的任意函数参数化。在洛伦兹规中工作时,规参数需要涉及对数(次前导)项的径向展开,以确保在前导阶时的非rivial角度依赖性。同时,我们采用了一种场强允许幂级数展开的设置,允许在纯轨距扇形内的轨距场展开中使用对数。同样的设置也用于研究电磁学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信