Symbol Level Precoding for Systems with Improper Gaussian Interference

Lu Liu, Rang Liu, Ly V. Nguyen, A. Lee Swindlehurst
{"title":"Symbol Level Precoding for Systems with Improper Gaussian Interference","authors":"Lu Liu, Rang Liu, Ly V. Nguyen, A. Lee Swindlehurst","doi":"arxiv-2409.07034","DOIUrl":null,"url":null,"abstract":"This paper focuses on precoding design in multi-antenna systems with improper\nGaussian interference (IGI), characterized by correlated real and imaginary\nparts. We first study block level precoding (BLP) and symbol level precoding\n(SLP) assuming the receivers apply a pre-whitening filter to decorrelate and\nnormalize the IGI. We then shift to the scenario where the base station (BS)\nincorporates the IGI statistics in the SLP design, which allows the receivers\nto employ a standard detection algorithm without pre-whitenting. Finally we\naddress the case where the channel and statistics of the IGI are unknown, and\nwe formulate robust BLP and SLP designs that minimize the worst case\nperformance in such settings. Interestingly, we show that for BLP, the\nworst-case IGI is in fact proper, while for SLP the worst case occurs when the\ninterference signal is maximally improper, with fully correlated real and\nimaginary parts. Numerical results reveal the superior performance of SLP in\nterms of symbol error rate (SER) and energy efficiency (EE), especially for the\ncase where there is uncertainty in the non-circularity of the jammer.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on precoding design in multi-antenna systems with improper Gaussian interference (IGI), characterized by correlated real and imaginary parts. We first study block level precoding (BLP) and symbol level precoding (SLP) assuming the receivers apply a pre-whitening filter to decorrelate and normalize the IGI. We then shift to the scenario where the base station (BS) incorporates the IGI statistics in the SLP design, which allows the receivers to employ a standard detection algorithm without pre-whitenting. Finally we address the case where the channel and statistics of the IGI are unknown, and we formulate robust BLP and SLP designs that minimize the worst case performance in such settings. Interestingly, we show that for BLP, the worst-case IGI is in fact proper, while for SLP the worst case occurs when the interference signal is maximally improper, with fully correlated real and imaginary parts. Numerical results reveal the superior performance of SLP in terms of symbol error rate (SER) and energy efficiency (EE), especially for the case where there is uncertainty in the non-circularity of the jammer.
具有不适当高斯干扰的系统的符号级预编码
本文重点研究具有不恰当高斯干扰(IGI)的多天线系统中的预编码设计,其特点是实部和虚部相关。我们首先研究了块级预编码(BLP)和符号级预编码(SLP),假设接收器采用预白化滤波器对 IGI 进行去相关化和规范化处理。然后,我们转向基站(BS)将 IGI 统计纳入 SLP 设计的情况,这使得接收机可以采用标准检测算法,而无需预白化。最后,我们讨论了信道和 IGI 统计数据未知的情况,并制定了稳健的 BLP 和 SLP 设计,使这种情况下的最差性能最小化。有趣的是,我们发现对于 BLP 而言,最坏情况下的 IGI 实际上是正确的,而对于 SLP 而言,最坏情况发生在干扰信号最大程度不正确、实部和虚部完全相关的情况下。数值结果表明,SLP 在符号错误率 (SER) 和能效 (EE) 方面性能优越,尤其是在干扰器的非圆形不确定的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信