Quantum Reservoir Computing Using Bose-Einstein Condensate with damping

Yuki Kurokawa, Junichi Takahasi, Yoshiya Yamanaka
{"title":"Quantum Reservoir Computing Using Bose-Einstein Condensate with damping","authors":"Yuki Kurokawa, Junichi Takahasi, Yoshiya Yamanaka","doi":"arxiv-2408.09577","DOIUrl":null,"url":null,"abstract":"Quantum reservoir computing is a type of machine learning in which the\nhigh-dimensional Hilbert space of quantum systems contributes to performance.\nIn this study, we employ the Bose-Einstein condensate of dilute atomic gas as a\nreservoir to examine the effect of reduction in the number of condensed\nparticles, damping, and the nonlinearity of the dynamics. It is observed that\nfor the condensate to function as a reservoir, the physical system requires\ndamping. The nonlinearity of the dynamics improves the performance of the\nreservoir, while the reduction in the number of condensed particles degrades\nthe performance.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum reservoir computing is a type of machine learning in which the high-dimensional Hilbert space of quantum systems contributes to performance. In this study, we employ the Bose-Einstein condensate of dilute atomic gas as a reservoir to examine the effect of reduction in the number of condensed particles, damping, and the nonlinearity of the dynamics. It is observed that for the condensate to function as a reservoir, the physical system requires damping. The nonlinearity of the dynamics improves the performance of the reservoir, while the reduction in the number of condensed particles degrades the performance.
利用带阻尼的玻色-爱因斯坦凝结物进行量子存储计算
量子贮库计算是一种机器学习,量子系统的高维希尔伯特空间有助于提高其性能。在本研究中,我们采用稀原子气体的玻色-爱因斯坦凝聚态作为贮库,考察了凝聚态粒子数量减少、阻尼和动力学非线性的影响。研究发现,要使凝结物发挥储层的作用,物理系统需要阻尼。动力学的非线性提高了蓄水池的性能,而减少凝聚粒子的数量则降低了蓄水池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信