{"title":"A QoS and sustainability-driven two-stage service composition method in cloud manufacturing: combining clustering and bi-objective optimization","authors":"Chunhua Tang, Shuangyao Zhao, Han Su, Binbin Chen","doi":"10.1007/s10898-024-01430-z","DOIUrl":null,"url":null,"abstract":"<p>Manufacturing service composition (MSC) is a core technology in cloud manufacturing (CMfg), which has been intensively studied to find an optimal composite service with the best quality of service (QoS). With the continuous expansion of CMfg platforms, the difficulty of MSC is gradually increasing. Large-scale platforms have put forward higher requirements for combination efficiency, and its open and dynamic environment makes service QoS exhibit strong uncertainty, leading to reliability issues of MSC. Meanwhile, the increased number of services and users makes it necessary for the platform to consider the sustainability issue, including economic, environmental, and social aspects, based on an operations management perspective. However, current studies only consider part of efficiency, reliability, and sustainability as optimization objectives in MSC allocation models, and do not take them into account simultaneously in an integrated manner. Therefore, this study proposes a two-stage method integrating clustering and multi-objective optimization for reliable and sustainable MSC allocation. Specifically, in the first stage, the <i>K</i>-means clustering technique and the QoS stability-based service pruning mechanism are integrated into the service clustering process to improve the reliability of candidate services and reduce the search space of combinations. In the second stage, a multi-objective optimization model with maximizing QoS and sustainability is proposed to find the optimal MSC, and the fast non-dominated sorting genetic algorithm is adopted to solve the model. Finally, a case study of the actual production of a customized automated guided vehicle verifies the effectiveness of the proposed two-stage method.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"4 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01430-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Manufacturing service composition (MSC) is a core technology in cloud manufacturing (CMfg), which has been intensively studied to find an optimal composite service with the best quality of service (QoS). With the continuous expansion of CMfg platforms, the difficulty of MSC is gradually increasing. Large-scale platforms have put forward higher requirements for combination efficiency, and its open and dynamic environment makes service QoS exhibit strong uncertainty, leading to reliability issues of MSC. Meanwhile, the increased number of services and users makes it necessary for the platform to consider the sustainability issue, including economic, environmental, and social aspects, based on an operations management perspective. However, current studies only consider part of efficiency, reliability, and sustainability as optimization objectives in MSC allocation models, and do not take them into account simultaneously in an integrated manner. Therefore, this study proposes a two-stage method integrating clustering and multi-objective optimization for reliable and sustainable MSC allocation. Specifically, in the first stage, the K-means clustering technique and the QoS stability-based service pruning mechanism are integrated into the service clustering process to improve the reliability of candidate services and reduce the search space of combinations. In the second stage, a multi-objective optimization model with maximizing QoS and sustainability is proposed to find the optimal MSC, and the fast non-dominated sorting genetic algorithm is adopted to solve the model. Finally, a case study of the actual production of a customized automated guided vehicle verifies the effectiveness of the proposed two-stage method.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.