{"title":"Improved approximation algorithms for the k-path partition problem","authors":"Shiming Li, Wei Yu, Zhaohui Liu","doi":"10.1007/s10898-024-01428-7","DOIUrl":null,"url":null,"abstract":"<p>The <i>k</i>-path partition problem (kPP), defined on a graph <span>\\(G=(V,E)\\)</span>, is a well-known NP-hard problem when <span>\\(k\\ge 3\\)</span>. The goal of the kPP is to find a minimum collection of vertex-disjoint paths to cover all the vertices in <i>G</i> such that the number of vertices on each path is no more than <i>k</i>. In this paper, we give two approximation algorithms for the kPP. The first one, called Algorithm 1, uses an algorithm for the (0,1)-weighted maximum traveling salesman problem as a subroutine. When <i>G</i> is undirected, the approximation ratio of Algorithm 1 is <span>\\(\\frac{k+12}{7} -\\frac{6}{7k} \\)</span>, which improves on the previous best-known approximation algorithm for every <span>\\(k\\ge 7\\)</span>. When <i>G</i> is directed, Algorithm 1 is a <span>\\(\\left( \\frac{k+6}{4} -\\frac{3}{4k}\\right) \\)</span>-approximation algorithm, which improves the existing best available approximation algorithm for every <span>\\(k\\ge 10\\)</span>. Our second algorithm, i.e. Algorithm 2, is a local search algorithm tailored for the kPP in undirected graphs with small <i>k</i>. Algorithm 2 improves on the approximation ratios of the best available algorithm for every <span>\\(k=4,5,6\\)</span>. Combined with Algorithms 1 and 2, we have improved the approximation ratio for the kPP in undirected graphs for each <span>\\(k\\ge 4\\)</span> as well as the approximation ratio for the kPP in directed graphs for each <span>\\(k\\ge 10\\)</span>. As for the negative side, we show that for any <span>\\(\\epsilon >0\\)</span> it is NP-hard to approximate the kPP (with <i>k</i> being part of the input) within the ratio <span>\\(O(k^{1-\\epsilon })\\)</span>, which implies that Algorithm 1 is asymptotically optimal.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"105 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01428-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The k-path partition problem (kPP), defined on a graph \(G=(V,E)\), is a well-known NP-hard problem when \(k\ge 3\). The goal of the kPP is to find a minimum collection of vertex-disjoint paths to cover all the vertices in G such that the number of vertices on each path is no more than k. In this paper, we give two approximation algorithms for the kPP. The first one, called Algorithm 1, uses an algorithm for the (0,1)-weighted maximum traveling salesman problem as a subroutine. When G is undirected, the approximation ratio of Algorithm 1 is \(\frac{k+12}{7} -\frac{6}{7k} \), which improves on the previous best-known approximation algorithm for every \(k\ge 7\). When G is directed, Algorithm 1 is a \(\left( \frac{k+6}{4} -\frac{3}{4k}\right) \)-approximation algorithm, which improves the existing best available approximation algorithm for every \(k\ge 10\). Our second algorithm, i.e. Algorithm 2, is a local search algorithm tailored for the kPP in undirected graphs with small k. Algorithm 2 improves on the approximation ratios of the best available algorithm for every \(k=4,5,6\). Combined with Algorithms 1 and 2, we have improved the approximation ratio for the kPP in undirected graphs for each \(k\ge 4\) as well as the approximation ratio for the kPP in directed graphs for each \(k\ge 10\). As for the negative side, we show that for any \(\epsilon >0\) it is NP-hard to approximate the kPP (with k being part of the input) within the ratio \(O(k^{1-\epsilon })\), which implies that Algorithm 1 is asymptotically optimal.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.