A. Ostovari Moghaddam, R. Fereidonnejad, D. V. Mikhailov, M. Naseri, E. A. Trofimov
{"title":"Mechanical Properties of the Al3(TiTaZrNbHf) High Entropy Intermetallic Compound: A Molecular Dynamic Study","authors":"A. Ostovari Moghaddam, R. Fereidonnejad, D. V. Mikhailov, M. Naseri, E. A. Trofimov","doi":"10.1134/S1029959924040088","DOIUrl":null,"url":null,"abstract":"<p>Deformation mechanisms of the Al<sub>3</sub>(TiTaZrNbHf) high entropy intermetallic compound under tensile loading were studied using molecular dynamic simulations. To this end, the site occupancy of the five constituent atoms that form the high entropy sublattice of Al<sub>3</sub>(TiTaZrNbHf) was first determined by simulating the near-equilibrium melting/crystallization process. It is shown that nuclei of intrinsic stacking faults are formed under early plastic deformation due to dislocation nucleation and glide, which further contribute to the formation and growth of twin boundaries. Twinning and 1/6<112> Shockley partial dislocations are key components in the plastic deformation of Al<sub>3</sub>(TiTaZrNbHf) at room and elevated temperatures, which is in good agreement with the experimental observations for D0<sub>22</sub>-structured materials. The tensile strength of Al<sub>3</sub>(TiTaZrNbHf) is 4.6 GPa at 300 K and slightly decreases to 4.34 GPa at 1000 K, highlighting the unique properties of high entropy intermetallic compounds in retaining their mechanical properties at elevated temperatures. The derived results provide grounds for understanding the atomic-scale origin of deformation mechanisms in high entropy intermetallic compounds. They also show potentials for tailoring the chemical composition of intermetallic compounds to overcome the problem of low ductility, paving the way to their industrial applications.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"436 - 446"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924040088","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Deformation mechanisms of the Al3(TiTaZrNbHf) high entropy intermetallic compound under tensile loading were studied using molecular dynamic simulations. To this end, the site occupancy of the five constituent atoms that form the high entropy sublattice of Al3(TiTaZrNbHf) was first determined by simulating the near-equilibrium melting/crystallization process. It is shown that nuclei of intrinsic stacking faults are formed under early plastic deformation due to dislocation nucleation and glide, which further contribute to the formation and growth of twin boundaries. Twinning and 1/6<112> Shockley partial dislocations are key components in the plastic deformation of Al3(TiTaZrNbHf) at room and elevated temperatures, which is in good agreement with the experimental observations for D022-structured materials. The tensile strength of Al3(TiTaZrNbHf) is 4.6 GPa at 300 K and slightly decreases to 4.34 GPa at 1000 K, highlighting the unique properties of high entropy intermetallic compounds in retaining their mechanical properties at elevated temperatures. The derived results provide grounds for understanding the atomic-scale origin of deformation mechanisms in high entropy intermetallic compounds. They also show potentials for tailoring the chemical composition of intermetallic compounds to overcome the problem of low ductility, paving the way to their industrial applications.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.