Generating Baikal-GVD high energy cascade-like neutrino events with a GEANT4-based simulation toolkit* * Supported by the Department of Science and Technology of Sichuan Province, China (2023YFSY0014), the Innovation Fund (E25156U110 of IHEP), GHFUND A (202302019600), and the framework of the State project "Science" by the Ministry of Science and Higher Education of the Russian Federation (075-15-2024-541)
{"title":"Generating Baikal-GVD high energy cascade-like neutrino events with a GEANT4-based simulation toolkit* * Supported by the Department of Science and Technology of Sichuan Province, China (2023YFSY0014), the Innovation Fund (E25156U110 of IHEP), GHFUND A (202302019600), and the framework of the State project \"Science\" by the Ministry of Science and Higher Education of the Russian Federation (075-15-2024-541)","authors":"Zike Wang, A.D. Avrorin, Zhen Cao, Mingjun Chen, Peiyuan Chu, Zh.-A.M. Dzhilkibaev, Bo Gao, Tianqi Huang, Jiali Liu, Ying Qi, Xiaohao You, D.N. Zaborov","doi":"10.1088/1674-1137/ad5bd4","DOIUrl":null,"url":null,"abstract":"Using the GEANT4 and Cosmic Ray Monte Carlo (CRMC) software packages, we developed a new simulation toolkit for astrophysical neutrino telescopes. By configuring the Baikal-GVD detector and comparing the vertex position and direction of incident particles, as well as the channel-by-channel signals, to the events detected by Baikal-GVD, we successfully generated 13 high-energy cascade neutrino events with the toolkit. Our analysis revealed a systematic offset between the reconstructed shower position and the true interaction position, with a distance close to the scale of the shower maximum of −0.54±1.29 m. We achieved a good linear relationship between the photoelectron number of neutrino events obtained by simulation and the real data measured by Baikal-GVD. The simulation toolkit could serve as a reliable basis for studying the performance of astrophysical neutrino telescopes.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad5bd4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Using the GEANT4 and Cosmic Ray Monte Carlo (CRMC) software packages, we developed a new simulation toolkit for astrophysical neutrino telescopes. By configuring the Baikal-GVD detector and comparing the vertex position and direction of incident particles, as well as the channel-by-channel signals, to the events detected by Baikal-GVD, we successfully generated 13 high-energy cascade neutrino events with the toolkit. Our analysis revealed a systematic offset between the reconstructed shower position and the true interaction position, with a distance close to the scale of the shower maximum of −0.54±1.29 m. We achieved a good linear relationship between the photoelectron number of neutrino events obtained by simulation and the real data measured by Baikal-GVD. The simulation toolkit could serve as a reliable basis for studying the performance of astrophysical neutrino telescopes.
期刊介绍:
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of:
Particle physics;
Nuclear physics;
Particle and nuclear astrophysics;
Cosmology;
Accelerator physics.
The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication.
The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal.
The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.