Multiplicative Sampled-Data Control for Interval Type-2 Fuzzy Interconnected PDE Systems Under Memory Event-Triggered Scheme

IF 3.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Danjing Zheng, Xiaona Song, Liang Zhang, Shuai Song, Zenglong Peng
{"title":"Multiplicative Sampled-Data Control for Interval Type-2 Fuzzy Interconnected PDE Systems Under Memory Event-Triggered Scheme","authors":"Danjing Zheng, Xiaona Song, Liang Zhang, Shuai Song, Zenglong Peng","doi":"10.1007/s40815-024-01768-2","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the multiplicative sampled-data control for the interconnected non-linear partial differential equation (PDE) systems with parameter uncertainties. First, an interval type-2 (IT2) Takagi–Sugeno fuzzy model is employed to reconstruct the studied system. In contrast to type-1 fuzzy sets, IT2 fuzzy sets can handle parameter uncertainties that type-1 fuzzy sets cannot handle, and they can characterize parameter uncertainties by utilizing upper and lower membership functions. Next, based on the IT2 fuzzy model, a sampled-data IT2 fuzzy controller containing multiplicative control gain uncertainties is designed to reduce the control cost, where a Bernoulli distribution is adopted to depict the stochastically occurring multiplicative gain uncertainties. Moreover, to conserve communication resources, a memory event-triggered strategy (METS) is employed to decrease the amount of useless data transmitted in the network channel. In contrast to the event-triggered strategy (ETS), the METS triggers these data with a small relative error between the current data and the latest published data, thereby achieving better control. Finally, an example is given to demonstrate the validity of the proposed methodology.</p>","PeriodicalId":14056,"journal":{"name":"International Journal of Fuzzy Systems","volume":"6 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40815-024-01768-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the multiplicative sampled-data control for the interconnected non-linear partial differential equation (PDE) systems with parameter uncertainties. First, an interval type-2 (IT2) Takagi–Sugeno fuzzy model is employed to reconstruct the studied system. In contrast to type-1 fuzzy sets, IT2 fuzzy sets can handle parameter uncertainties that type-1 fuzzy sets cannot handle, and they can characterize parameter uncertainties by utilizing upper and lower membership functions. Next, based on the IT2 fuzzy model, a sampled-data IT2 fuzzy controller containing multiplicative control gain uncertainties is designed to reduce the control cost, where a Bernoulli distribution is adopted to depict the stochastically occurring multiplicative gain uncertainties. Moreover, to conserve communication resources, a memory event-triggered strategy (METS) is employed to decrease the amount of useless data transmitted in the network channel. In contrast to the event-triggered strategy (ETS), the METS triggers these data with a small relative error between the current data and the latest published data, thereby achieving better control. Finally, an example is given to demonstrate the validity of the proposed methodology.

Abstract Image

记忆事件触发方案下区间 2 型模糊互联 PDE 系统的乘法采样数据控制
本文研究了参数不确定的互联非线性偏微分方程(PDE)系统的乘法采样数据控制。首先,采用区间 2 型 (IT2) 高木-菅野模糊模型来重构所研究的系统。与 1 型模糊集相比,IT2 模糊集可以处理 1 型模糊集无法处理的参数不确定性,并且可以利用上成员函数和下成员函数表征参数不确定性。接下来,基于 IT2 模糊模型,设计了包含乘法控制增益不确定性的采样数据 IT2 模糊控制器,以降低控制成本,其中采用伯努利分布来描述随机出现的乘法增益不确定性。此外,为了节约通信资源,还采用了内存事件触发策略(METS),以减少网络信道中传输的无用数据量。与事件触发策略(ETS)相比,METS 在当前数据与最新发布数据之间的相对误差较小的情况下触发这些数据,从而实现更好的控制。最后,举例说明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fuzzy Systems
International Journal of Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
7.80
自引率
9.30%
发文量
188
审稿时长
16 months
期刊介绍: The International Journal of Fuzzy Systems (IJFS) is an official journal of Taiwan Fuzzy Systems Association (TFSA) and is published semi-quarterly. IJFS will consider high quality papers that deal with the theory, design, and application of fuzzy systems, soft computing systems, grey systems, and extension theory systems ranging from hardware to software. Survey and expository submissions are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信