{"title":"On the Existence of Periodic Solutions of a System of Second-Order Ordinary Differential Equations with a Quasihomogeneous Nonlinearity","authors":"A. N. Naimov, M. V. Bystretsky","doi":"10.1134/s0012266124050112","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In the present paper, we study an a priori estimate and the existence of periodic solutions\nof a given period for a system of second-order ordinary differential equations with the main\nquasihomogeneous nonlinearity. It is proved that an a priori estimate of periodic solutions takes\nplace if the corresponding unperturbed system does not have nonzero bounded solutions. Under\nthe conditions of the a priori estimate, using methods for calculating the mapping degree of vector\nfields, a criterion for the existence of periodic solutions is stated and proved for any perturbation\nin a given class. The results obtained differ from earlier results in that the set of zeros of the main\nnonlinearity is not taken into account.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124050112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the present paper, we study an a priori estimate and the existence of periodic solutions
of a given period for a system of second-order ordinary differential equations with the main
quasihomogeneous nonlinearity. It is proved that an a priori estimate of periodic solutions takes
place if the corresponding unperturbed system does not have nonzero bounded solutions. Under
the conditions of the a priori estimate, using methods for calculating the mapping degree of vector
fields, a criterion for the existence of periodic solutions is stated and proved for any perturbation
in a given class. The results obtained differ from earlier results in that the set of zeros of the main
nonlinearity is not taken into account.