On the Existence of Periodic Solutions of a System of Second-Order Ordinary Differential Equations with a Quasihomogeneous Nonlinearity

Pub Date : 2024-09-11 DOI:10.1134/s0012266124050112
A. N. Naimov, M. V. Bystretsky
{"title":"On the Existence of Periodic Solutions of a System of Second-Order Ordinary Differential Equations with a Quasihomogeneous Nonlinearity","authors":"A. N. Naimov, M. V. Bystretsky","doi":"10.1134/s0012266124050112","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In the present paper, we study an a priori estimate and the existence of periodic solutions\nof a given period for a system of second-order ordinary differential equations with the main\nquasihomogeneous nonlinearity. It is proved that an a priori estimate of periodic solutions takes\nplace if the corresponding unperturbed system does not have nonzero bounded solutions. Under\nthe conditions of the a priori estimate, using methods for calculating the mapping degree of vector\nfields, a criterion for the existence of periodic solutions is stated and proved for any perturbation\nin a given class. The results obtained differ from earlier results in that the set of zeros of the main\nnonlinearity is not taken into account.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124050112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we study an a priori estimate and the existence of periodic solutions of a given period for a system of second-order ordinary differential equations with the main quasihomogeneous nonlinearity. It is proved that an a priori estimate of periodic solutions takes place if the corresponding unperturbed system does not have nonzero bounded solutions. Under the conditions of the a priori estimate, using methods for calculating the mapping degree of vector fields, a criterion for the existence of periodic solutions is stated and proved for any perturbation in a given class. The results obtained differ from earlier results in that the set of zeros of the main nonlinearity is not taken into account.

分享
查看原文
论具有准均质非线性的二阶常微分方程系统周期解的存在性
摘要 本文研究了具有主齐次非线性的二阶常微分方程系统的先验估计和给定周期的周期解的存在性。研究证明,如果相应的未扰动系统不存在非零有界解,周期解的先验估计就会发生。在先验估计的条件下,利用计算向量场映射度的方法,针对给定类别中的任何扰动,阐述并证明了周期解存在的标准。所获得的结果与之前的结果不同,因为它没有考虑主非线性的零点集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信