Approximation of Functional-Algebraic Eigenvalue Problems

Pub Date : 2024-09-11 DOI:10.1134/s0012266124050100
D. M. Korosteleva
{"title":"Approximation of Functional-Algebraic Eigenvalue Problems","authors":"D. M. Korosteleva","doi":"10.1134/s0012266124050100","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We propose a new symmetric variational functional-algebraic statement of the eigenvalue\nproblem in a Hilbert space with a linear dependence on the spectral parameter for a class of\nmathematical models of thin-walled structures with an attached oscillator. The existence of\neigenvalues and eigenvectors is established. A new symmetric approximation of the problem in\na finite-dimensional subspace with a linear dependence on the spectral parameter is constructed.\nError estimates are obtained for the approximate eigenvalues and eigenvectors. The theoretical\nresults are illustrated with an example of a structural mechanics problem.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124050100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new symmetric variational functional-algebraic statement of the eigenvalue problem in a Hilbert space with a linear dependence on the spectral parameter for a class of mathematical models of thin-walled structures with an attached oscillator. The existence of eigenvalues and eigenvectors is established. A new symmetric approximation of the problem in a finite-dimensional subspace with a linear dependence on the spectral parameter is constructed. Error estimates are obtained for the approximate eigenvalues and eigenvectors. The theoretical results are illustrated with an example of a structural mechanics problem.

分享
查看原文
函数代数特征值问题的近似方法
摘要 我们针对一类带有附加振荡器的薄壁结构数学模型,提出了一种新的对称变分函数代数陈述,即在希尔伯特空间中,特征值问题与谱参数线性相关。确定了特征值和特征向量的存在。构建了该问题在有限维子空间中的新对称近似值,该近似值与谱参数成线性关系,并获得了近似特征值和特征向量的误差估计。以一个结构力学问题为例对理论结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信