On the Structure of the Kernel of the Schwarz Problem for First-Order Elliptic Systems on the Plane

Pub Date : 2024-09-11 DOI:10.1134/s0012266124050057
V. G. Nikolaev
{"title":"On the Structure of the Kernel of the Schwarz Problem for First-Order Elliptic Systems on the Plane","authors":"V. G. Nikolaev","doi":"10.1134/s0012266124050057","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The Schwarz problem for <span>\\(J\\)</span>-analytic functions in\nan arbitrary ellipse is considered. The matrix <span>\\(J\\)</span> is assumed to be\ntwo-dimensional with distinct eigenvalues lying above the real axis. An example of a nonconstant\nsolution of the homogeneous Schwarz problem in the form of a vector polynomial of degree three is\ngiven. A numerical parameter <span>\\(l\\)</span> of the matrix\n<span>\\(J \\)</span>, expressed via its eigenvectors, is introduced. After\nthat, one relation derived earlier by the present author is analyzed. Based on this analysis, a\nmethod for computing the dimension and structure of the kernel of the Schwarz problem in an\narbitrary ellipse is obtained. Sufficient conditions for the triviality of the kernel expressed via the\nellipse parameters, the eigenvalues of the matrix <span>\\(J\\)</span>, and the parameter\n<span>\\(l \\)</span> are obtained. Examples of one-dimensional and\ntrivial kernels are given.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124050057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Schwarz problem for \(J\)-analytic functions in an arbitrary ellipse is considered. The matrix \(J\) is assumed to be two-dimensional with distinct eigenvalues lying above the real axis. An example of a nonconstant solution of the homogeneous Schwarz problem in the form of a vector polynomial of degree three is given. A numerical parameter \(l\) of the matrix \(J \), expressed via its eigenvectors, is introduced. After that, one relation derived earlier by the present author is analyzed. Based on this analysis, a method for computing the dimension and structure of the kernel of the Schwarz problem in an arbitrary ellipse is obtained. Sufficient conditions for the triviality of the kernel expressed via the ellipse parameters, the eigenvalues of the matrix \(J\), and the parameter \(l \) are obtained. Examples of one-dimensional and trivial kernels are given.

分享
查看原文
论平面上一阶椭圆系统施瓦茨问题内核的结构
Abstract 考虑了任意椭圆中 \(J\)-analytic 函数的 Schwarz 问题。假定矩阵 \(J\) 是二维的,其特征值位于实轴之上。给出了一个以三度矢量多项式为形式的同质施瓦茨问题非定常解的例子。引入了通过其特征向量表示的矩阵(J \)的数值参数 \(l \)。之后,分析了作者早先得出的一个关系式。在此分析的基础上,得到了计算任意椭圆中施瓦茨问题核的维数和结构的方法。通过椭圆参数、矩阵(J)的特征值和参数(l),得到了内核三性的充分条件。给出了一维核和三维核的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信