Approximately covering vertices by order-$5$ or longer paths

Mingyang Gong, Zhi-Zhong Chen, Guohui Lin, Lusheng Wang
{"title":"Approximately covering vertices by order-$5$ or longer paths","authors":"Mingyang Gong, Zhi-Zhong Chen, Guohui Lin, Lusheng Wang","doi":"arxiv-2408.11225","DOIUrl":null,"url":null,"abstract":"This paper studies $MPC^{5+}_v$, which is to cover as many vertices as\npossible in a given graph $G=(V,E)$ by vertex-disjoint $5^+$-paths (i.e., paths\neach with at least five vertices). $MPC^{5+}_v$ is NP-hard and admits an\nexisting local-search-based approximation algorithm which achieves a ratio of\n$\\frac {19}7\\approx 2.714$ and runs in $O(|V|^6)$ time. In this paper, we\npresent a new approximation algorithm for $MPC^{5+}_v$ which achieves a ratio\nof $2.511$ and runs in $O(|V|^{2.5} |E|^2)$ time. Unlike the previous\nalgorithm, the new algorithm is based on maximum matching, maximum path-cycle\ncover, and recursion.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies $MPC^{5+}_v$, which is to cover as many vertices as possible in a given graph $G=(V,E)$ by vertex-disjoint $5^+$-paths (i.e., paths each with at least five vertices). $MPC^{5+}_v$ is NP-hard and admits an existing local-search-based approximation algorithm which achieves a ratio of $\frac {19}7\approx 2.714$ and runs in $O(|V|^6)$ time. In this paper, we present a new approximation algorithm for $MPC^{5+}_v$ which achieves a ratio of $2.511$ and runs in $O(|V|^{2.5} |E|^2)$ time. Unlike the previous algorithm, the new algorithm is based on maximum matching, maximum path-cycle cover, and recursion.
大约以 5$ 或更长的路径覆盖顶点
本文研究了$MPC^{5+}_v$,即在给定图$G=(V,E)$中通过顶点相交的$5^+$路径(即每条路径至少有五个顶点)尽可能多地覆盖顶点。$MPC^{5+}_v$是NP难问题,现有的基于局部搜索的近似算法可以达到$frac {19}7\approx 2.714$的比率,运行时间为$O(|V|^6)$。本文提出了一种新的 $MPC^{5+}_v$ 近似算法,其比值达到 2.511$,运行时间为 $O(|V|^{2.5}|E|^2)$。与之前的算法不同,新算法基于最大匹配、最大路径循环覆盖和递归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信