N-Way Joint Mutual Exclusion Does Not Imply Any Pairwise Mutual Exclusion for Propositions

Roy S. Freedman
{"title":"N-Way Joint Mutual Exclusion Does Not Imply Any Pairwise Mutual Exclusion for Propositions","authors":"Roy S. Freedman","doi":"arxiv-2409.03784","DOIUrl":null,"url":null,"abstract":"Given a set of N propositions, if any pair is mutual exclusive, then the set\nof all propositions are N-way jointly mutually exclusive. This paper provides a\nnew general counterexample to the converse. We prove that for any set of N\npropositional variables, there exist N propositions such that their N-way\nconjunction is zero, yet all k-way component conjunctions are non-zero. The\nconsequence is that N-way joint mutual exclusion does not imply any pairwise\nmutual exclusion. A similar result is true for sets since propositional\ncalculus and set theory are models for two-element Boolean algebra.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a set of N propositions, if any pair is mutual exclusive, then the set of all propositions are N-way jointly mutually exclusive. This paper provides a new general counterexample to the converse. We prove that for any set of N propositional variables, there exist N propositions such that their N-way conjunction is zero, yet all k-way component conjunctions are non-zero. The consequence is that N-way joint mutual exclusion does not imply any pairwise mutual exclusion. A similar result is true for sets since propositional calculus and set theory are models for two-element Boolean algebra.
N 向联合互斥并不意味着命题的任何成对互斥
给定一个由 N 个命题组成的集合,如果任何一对命题是互斥的,那么所有命题的集合就是 N 路共同互斥的。本文为反义词提供了一个新的一般性反例。我们证明,对于任何由 N 个命题变量组成的集合,都存在 N 个命题,它们的 N 向连词为零,但所有 k 向分量连词都不为零。其结果是,N 向联合互斥并不意味着任何成对互斥。类似的结果也适用于集合,因为命题微积分和集合论是两元素布尔代数的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信