Complexity of Deciding the Equality of Matching Numbers

Guilherme C. M. Gomes, Bruno P. Masquio, Paulo E. D. Pinto, Dieter Rautenbach, Vinicius F. dos Santos, Jayme L. Szwarcfiter, Florian Werner
{"title":"Complexity of Deciding the Equality of Matching Numbers","authors":"Guilherme C. M. Gomes, Bruno P. Masquio, Paulo E. D. Pinto, Dieter Rautenbach, Vinicius F. dos Santos, Jayme L. Szwarcfiter, Florian Werner","doi":"arxiv-2409.04855","DOIUrl":null,"url":null,"abstract":"A matching is said to be disconnected if the saturated vertices induce a\ndisconnected subgraph and induced if the saturated vertices induce a 1-regular\ngraph. The disconnected and induced matching numbers are defined as the maximum\ncardinality of such matchings, respectively, and are known to be NP-hard to\ncompute. In this paper, we study the relationship between these two parameters\nand the matching number. In particular, we discuss the complexity of two\ndecision problems; first: deciding if the matching number and disconnected\nmatching number are equal; second: deciding if the disconnected matching number\nand induced matching number are equal. We show that given a bipartite graph\nwith diameter four, deciding if the matching number and disconnected matching\nnumber are equal is NP-complete; the same holds for bipartite graphs with\nmaximum degree three. We characterize diameter three graphs with equal matching\nnumber and disconnected matching number, which yields a polynomial time\nrecognition algorithm. Afterwards, we show that deciding if the induced and\ndisconnected matching numbers are equal is co-NP-complete for bipartite graphs\nof diameter 3. When the induced matching number is large enough compared to the\nmaximum degree, we characterize graphs where these parameters are equal, which\nresults in a polynomial time algorithm for bounded degree graphs.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A matching is said to be disconnected if the saturated vertices induce a disconnected subgraph and induced if the saturated vertices induce a 1-regular graph. The disconnected and induced matching numbers are defined as the maximum cardinality of such matchings, respectively, and are known to be NP-hard to compute. In this paper, we study the relationship between these two parameters and the matching number. In particular, we discuss the complexity of two decision problems; first: deciding if the matching number and disconnected matching number are equal; second: deciding if the disconnected matching number and induced matching number are equal. We show that given a bipartite graph with diameter four, deciding if the matching number and disconnected matching number are equal is NP-complete; the same holds for bipartite graphs with maximum degree three. We characterize diameter three graphs with equal matching number and disconnected matching number, which yields a polynomial time recognition algorithm. Afterwards, we show that deciding if the induced and disconnected matching numbers are equal is co-NP-complete for bipartite graphs of diameter 3. When the induced matching number is large enough compared to the maximum degree, we characterize graphs where these parameters are equal, which results in a polynomial time algorithm for bounded degree graphs.
决定匹配数相等的复杂性
如果饱和顶点诱导出一个不相连的子图,则称该匹配为断开匹配;如果饱和顶点诱导出一个 1 规则图,则称该匹配为诱导匹配。断开匹配数和诱导匹配数分别被定义为此类匹配的最大卡方极大值,已知其计算难度为 NP。本文将研究这两个参数与匹配数之间的关系。我们特别讨论了两个决策问题的复杂性:第一:决定匹配数和断开匹配数是否相等;第二:决定断开匹配数和诱导匹配数是否相等。我们证明,给定一个直径为四的双方形图,判断匹配数和断开匹配数是否相等是 NP-完全的;对于最大度数为三的双方形图也是如此。我们描述了具有相等匹配数和断开匹配数的直径为三的图的特征,从而得到了一种多项式时间识别算法。之后,我们证明了对于直径为 3 的双方形图,决定诱导匹配数和断开匹配数是否相等是共 NP-完全的。当诱导匹配数与最大度数相比足够大时,我们描述了这些参数相等的图的特征,从而得到了针对有界度图的多项式时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信