Radial symmetry of positive solutions for a tempered fractional p-Laplacian system

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xueying Chen
{"title":"Radial symmetry of positive solutions for a tempered fractional p-Laplacian system","authors":"Xueying Chen","doi":"10.1007/s13540-024-00340-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the following Schrödinger system involving the tempered fractional <i>p</i>-Laplacian </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\begin{aligned} &amp; (-\\varDelta -\\lambda )^s_p u(x)+au^{p-1}(x)=f(u(x),v(x)),\\\\ &amp; (-\\varDelta -\\lambda )^t_p v(x)+bv^{p-1}(x)=g(u(x),v(x)), \\end{aligned} \\end{array}\\right. } \\end{aligned}$$</span><p>where <span>\\(n \\ge 2\\)</span>, <span>\\(a, b&gt;0\\)</span>, <span>\\(2&lt;p&lt;\\infty \\)</span>, <span>\\(0&lt;s, t&lt;1\\)</span> and <span>\\(\\lambda \\)</span> is a sufficiently small positive constant. To effectively utilize the direct method of moving planes, we first establish the narrow region principle and the decay at infinity. Then we prove the radial symmetry and monotonicity of positive solutions for the system in the unit ball and the whole space. Our results are an extension of some content in Ma and Zhang (Appl Math J Chin Univ 37: 52–72, 2022).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00340-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the following Schrödinger system involving the tempered fractional p-Laplacian

$$\begin{aligned} {\left\{ \begin{array}{ll} \begin{aligned} & (-\varDelta -\lambda )^s_p u(x)+au^{p-1}(x)=f(u(x),v(x)),\\ & (-\varDelta -\lambda )^t_p v(x)+bv^{p-1}(x)=g(u(x),v(x)), \end{aligned} \end{array}\right. } \end{aligned}$$

where \(n \ge 2\), \(a, b>0\), \(2<p<\infty \), \(0<s, t<1\) and \(\lambda \) is a sufficiently small positive constant. To effectively utilize the direct method of moving planes, we first establish the narrow region principle and the decay at infinity. Then we prove the radial symmetry and monotonicity of positive solutions for the system in the unit ball and the whole space. Our results are an extension of some content in Ma and Zhang (Appl Math J Chin Univ 37: 52–72, 2022).

节制分数 p-拉普拉斯系统正解的径向对称性
在本文中,我们考虑了以下涉及有节制分数 p-拉普拉奇的薛定谔系统 $$\begin{aligned} {\left\{ \begin{array}{ll}\(-\varDelta -\lambda )^s_p u(x)+au^{p-1}(x)=f(u(x),v(x)),\ & (-\varDelta -\lambda )^t_p v(x)+bv^{p-1}(x)=g(u(x),v(x)),\end{aligned}\end{array}\right.}\end{aligned}$$其中(nge 2),(a, b>0 ),(2<p<infty),(0<s, t<1)和(lambda)是一个足够小的正常数。为了有效利用移动平面的直接方法,我们首先建立了窄区域原理和无穷衰减。然后,我们证明了正解在单位球和整个空间中的径向对称性和单调性。我们的结果是对 Ma 和 Zhang (Appl Math J Chin Univ 37: 52-72, 2022) 中某些内容的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信