F3Net: Adaptive Frequency Feature Filtering Network for Multimodal Remote Sensing Image Registration

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Dou Quan;Zhe Wang;Shuang Wang;Yunan Li;Bo Ren;Mengte Kang;Jocelyn Chanussot;Licheng Jiao
{"title":"F3Net: Adaptive Frequency Feature Filtering Network for Multimodal Remote Sensing Image Registration","authors":"Dou Quan;Zhe Wang;Shuang Wang;Yunan Li;Bo Ren;Mengte Kang;Jocelyn Chanussot;Licheng Jiao","doi":"10.1109/TGRS.2024.3459416","DOIUrl":null,"url":null,"abstract":"Multimodal remote sensing image registration is crucial for multimodal information fusion and applications. The significant nonlinear appearance difference between multimodal images caused by the various imaging mechanisms dramatically increases the challenge of image registration. This article proposes an adaptive frequency feature filtering network (F3Net) for cross-modal remote sensing image registration. On the one hand, F3Net explicitly explores the useful frequency components across modal images based on multilevel deep features. On the other hand, F3Net can take advantage of the nonlocal receptive fields by frequency modulation for feature learning and boosting image registration performances. F3Net inserts frequency feature filtering (F3) modules in multilevel deep features. Specifically, F3Net first performs the fast Fourier transform (FFT) for deep features. Then, F3Net designs a frequency attention (FA) module to adaptive enhance the shared and discriminative frequency features between multimodal images while suppressing the frequency components that hinder the cross-modal image registration. In addition, F3Net adopts multiscale frequency filtering fusion to facilitate discriminative feature learning, including global frequency feature filtering (GF3) based on the global image spectrum and local frequency feature filtering (LF3) based on the spectrum of stacked image regions. Experimental results on many remote sensing images have demonstrated the efficiency of the F3Net on multimodal image registration.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"62 ","pages":"1-13"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679163/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal remote sensing image registration is crucial for multimodal information fusion and applications. The significant nonlinear appearance difference between multimodal images caused by the various imaging mechanisms dramatically increases the challenge of image registration. This article proposes an adaptive frequency feature filtering network (F3Net) for cross-modal remote sensing image registration. On the one hand, F3Net explicitly explores the useful frequency components across modal images based on multilevel deep features. On the other hand, F3Net can take advantage of the nonlocal receptive fields by frequency modulation for feature learning and boosting image registration performances. F3Net inserts frequency feature filtering (F3) modules in multilevel deep features. Specifically, F3Net first performs the fast Fourier transform (FFT) for deep features. Then, F3Net designs a frequency attention (FA) module to adaptive enhance the shared and discriminative frequency features between multimodal images while suppressing the frequency components that hinder the cross-modal image registration. In addition, F3Net adopts multiscale frequency filtering fusion to facilitate discriminative feature learning, including global frequency feature filtering (GF3) based on the global image spectrum and local frequency feature filtering (LF3) based on the spectrum of stacked image regions. Experimental results on many remote sensing images have demonstrated the efficiency of the F3Net on multimodal image registration.
F3Net:用于多模态遥感图像配准的自适应频率特性滤波网络
多模态遥感图像配准对于多模态信息融合和应用至关重要。各种成像机制导致多模态图像之间存在明显的非线性外观差异,这大大增加了图像配准的难度。本文提出了一种用于跨模态遥感图像配准的自适应频率特性滤波网络(F3Net)。一方面,F3Net 基于多层次深度特征,明确地探索跨模态图像的有用频率成分。另一方面,F3Net 可以通过频率调制利用非局部感受野进行特征学习,提高图像配准性能。F3Net 在多级深度特征中插入了频率特性过滤(F3)模块。具体来说,F3Net 首先对深度特征进行快速傅立叶变换(FFT)。然后,F3Net 设计了一个频率注意(FA)模块,以自适应地增强多模态图像之间的共享频率特性和鉴别频率特性,同时抑制阻碍跨模态图像配准的频率成分。此外,F3Net 还采用了多尺度频率滤波融合技术来促进判别特征学习,包括基于全局图像频谱的全局频率特性滤波(GF3)和基于堆叠图像区域频谱的局部频率特性滤波(LF3)。在许多遥感图像上的实验结果证明了 F3Net 在多模态图像配准上的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信