Energy-Efficient Ground-Air-Space Vehicular Crowdsensing by Hierarchical Multi-Agent Deep Reinforcement Learning With Diffusion Models

Yinuo Zhao;Chi Harold Liu;Tianjiao Yi;Guozheng Li;Dapeng Wu
{"title":"Energy-Efficient Ground-Air-Space Vehicular Crowdsensing by Hierarchical Multi-Agent Deep Reinforcement Learning With Diffusion Models","authors":"Yinuo Zhao;Chi Harold Liu;Tianjiao Yi;Guozheng Li;Dapeng Wu","doi":"10.1109/JSAC.2024.3459039","DOIUrl":null,"url":null,"abstract":"The integrated ground-air-space (GAS) communications system can enhance post-disaster rescue and management efforts when traditional networks fail, by navigating unmanned ground vehicles (UGVs) and unmanned arieal vehicles (UAVs) to collaboratively collect sufficient data from point-of-interests (PoIs) in a timely manner. In this paper, we consider the GAS vehicular crowdsensing (VCS) campaign, where UGVs dispatch and callback UAVs periodically across multiple stops in the workzone, to maximize the total collected amount of data, geographic fairness while minimizing the energy consumption simultaneously. Specifically, we propose an energy-efficient, go-directed hierarchical multi-agent deep reinforcement learning (MADRL) method with discrete diffusion models called “gMADRL-VCS”, to optimize the high-level goal-conditioned navigation policies of UGVs, and the low-level long-term sensing strategies of UAVs. Extensive experimental results on two real-world datasets in Roma, Italy, and Hong Kong SAR, China show that gMADRL-VCS outperforms baselines in terms of energy efficiency, data collection ratio, energy consumption, and UAV-UGV cooperation factor.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 12","pages":"3566-3580"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10679184/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integrated ground-air-space (GAS) communications system can enhance post-disaster rescue and management efforts when traditional networks fail, by navigating unmanned ground vehicles (UGVs) and unmanned arieal vehicles (UAVs) to collaboratively collect sufficient data from point-of-interests (PoIs) in a timely manner. In this paper, we consider the GAS vehicular crowdsensing (VCS) campaign, where UGVs dispatch and callback UAVs periodically across multiple stops in the workzone, to maximize the total collected amount of data, geographic fairness while minimizing the energy consumption simultaneously. Specifically, we propose an energy-efficient, go-directed hierarchical multi-agent deep reinforcement learning (MADRL) method with discrete diffusion models called “gMADRL-VCS”, to optimize the high-level goal-conditioned navigation policies of UGVs, and the low-level long-term sensing strategies of UAVs. Extensive experimental results on two real-world datasets in Roma, Italy, and Hong Kong SAR, China show that gMADRL-VCS outperforms baselines in terms of energy efficiency, data collection ratio, energy consumption, and UAV-UGV cooperation factor.
利用扩散模型的分层多代理深度强化学习实现高能效地面-空气-空间车载人群感应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信