{"title":"Trained immunity of intestinal tuft cells during infancy enhances host defense against enteroviral infections in mice.","authors":"Deyan Chen,Jing Wu,Fang Zhang,Ruining Lyu,Qiao You,Yajie Qian,Yurong Cai,Xiaoyan Tian,Hongji Tao,Yating He,Waqas Nawaz,Zhiwei Wu","doi":"10.1038/s44321-024-00128-9","DOIUrl":null,"url":null,"abstract":"Innate immune cells have been acknowledged as trainable in recent years. While intestinal tuft cells are recognized for their crucial roles in the host defense against intestinal pathogens, there remains uncertainty regarding their trainability. Enterovirus 71 (EV71), a prevalent enterovirus that primarily infects children but rarely infects adults. At present, there is a significant expansion of intestinal tuft cells in the EV71-infected mouse model, which is associated with EV71-induced interleukin-25 (IL-25) production. Further, we found that IL-25 pre-treatment at 2 weeks old mouse enabled tuft cells to acquire immune memory. This was evidenced by the rapid expansion and stronger response of IL-25-trained tuft cells in response to EV71 infection at 6 weeks old, surpassing the reactivity of naïve tuft cells in mice without IL-25-trained progress. Interestingly, IL-25-trained intestinal tuft cells exhibit anti-enteroviral effect via producing a higher level of IL-25. Mechanically, IL-25 treatment upregulates spermidine/spermine acetyl-transferase enzyme (SAT1) expression, mediates intracellular polyamine deficiency, further inhibits enterovirus replication. In summary, tuft cells can be trained by IL-25, which supports faster and higher level IL-25 production in response to EV71 infection and further exhibits anti-enteroviral effect via SAT1-mediated intracellular polyamine deficiency. Given that IL-25 can be induced by multiple gut microbes during human growth and development, including shifts in gut flora abundance, which may partially explain the different susceptibility to enteroviral infections between adults and children.","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00128-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Innate immune cells have been acknowledged as trainable in recent years. While intestinal tuft cells are recognized for their crucial roles in the host defense against intestinal pathogens, there remains uncertainty regarding their trainability. Enterovirus 71 (EV71), a prevalent enterovirus that primarily infects children but rarely infects adults. At present, there is a significant expansion of intestinal tuft cells in the EV71-infected mouse model, which is associated with EV71-induced interleukin-25 (IL-25) production. Further, we found that IL-25 pre-treatment at 2 weeks old mouse enabled tuft cells to acquire immune memory. This was evidenced by the rapid expansion and stronger response of IL-25-trained tuft cells in response to EV71 infection at 6 weeks old, surpassing the reactivity of naïve tuft cells in mice without IL-25-trained progress. Interestingly, IL-25-trained intestinal tuft cells exhibit anti-enteroviral effect via producing a higher level of IL-25. Mechanically, IL-25 treatment upregulates spermidine/spermine acetyl-transferase enzyme (SAT1) expression, mediates intracellular polyamine deficiency, further inhibits enterovirus replication. In summary, tuft cells can be trained by IL-25, which supports faster and higher level IL-25 production in response to EV71 infection and further exhibits anti-enteroviral effect via SAT1-mediated intracellular polyamine deficiency. Given that IL-25 can be induced by multiple gut microbes during human growth and development, including shifts in gut flora abundance, which may partially explain the different susceptibility to enteroviral infections between adults and children.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)