Robust Next-Day Scheduling of PV Generation Sources Supplying a Standalone DC Microgrid via a Semi-Definite Programming Model

IF 3.3 Q3 ENERGY & FUELS
Walter Gil-González;Oscar Danilo Montoya;Luis F. Grisales-Noreña;Fabio Andrade
{"title":"Robust Next-Day Scheduling of PV Generation Sources Supplying a Standalone DC Microgrid via a Semi-Definite Programming Model","authors":"Walter Gil-González;Oscar Danilo Montoya;Luis F. Grisales-Noreña;Fabio Andrade","doi":"10.1109/OAJPE.2024.3425374","DOIUrl":null,"url":null,"abstract":"This study focuses on optimizing the efficient operation of standalone direct-current (DC) microgrids with photovoltaic (PV) sources using semi-definite programming (SDP) optimization. The PV source operation model is formulated as a nonlinear programming (NLP) problem with the objective of minimizing daily energy losses and reducing CO2 emissions compared to diesel generators. Transforming the NLP model into convex optimization involves a linear matrix model that combines positive semi-definite matrices with an affine space. This approach enhances robustness by incorporating uncertainties in demand and PV source power. The robust SDP model employs a min–max strategy for worst-case scenario energy management dispatch (EMD). Evaluating a 27-bus standalone DC microgrid, the SDP model outperforms random-based algorithms by achieving global optima in both objectives. Under uncertainties, the energy loss objective increases by 21.6706% with demand uncertainty, 0.3997% with PV source uncertainty, and 22.2009% with both. Meanwhile, the CO2 emissions objective increases by 11.9184%, 1.8237%, and 14.0045%, respectively. Additional simulations on an 85-node DC network confirm the efficacy of SDP in worst-case scenario EMD. All simulations utilized MATLAB’s Yalmip tool with the Mosek solver.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10589696","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10589696/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on optimizing the efficient operation of standalone direct-current (DC) microgrids with photovoltaic (PV) sources using semi-definite programming (SDP) optimization. The PV source operation model is formulated as a nonlinear programming (NLP) problem with the objective of minimizing daily energy losses and reducing CO2 emissions compared to diesel generators. Transforming the NLP model into convex optimization involves a linear matrix model that combines positive semi-definite matrices with an affine space. This approach enhances robustness by incorporating uncertainties in demand and PV source power. The robust SDP model employs a min–max strategy for worst-case scenario energy management dispatch (EMD). Evaluating a 27-bus standalone DC microgrid, the SDP model outperforms random-based algorithms by achieving global optima in both objectives. Under uncertainties, the energy loss objective increases by 21.6706% with demand uncertainty, 0.3997% with PV source uncertainty, and 22.2009% with both. Meanwhile, the CO2 emissions objective increases by 11.9184%, 1.8237%, and 14.0045%, respectively. Additional simulations on an 85-node DC network confirm the efficacy of SDP in worst-case scenario EMD. All simulations utilized MATLAB’s Yalmip tool with the Mosek solver.
通过半有限编程模型为独立直流微电网供电的光伏发电资源进行稳健的次日调度
本研究的重点是利用半有限编程(SDP)优化技术,优化带有光伏(PV)源的独立直流(DC)微电网的高效运行。光伏源运行模型被表述为一个非线性编程(NLP)问题,其目标是与柴油发电机相比,最大限度地减少每日能源损耗并降低二氧化碳排放量。将 NLP 模型转化为凸优化涉及一个线性矩阵模型,该模型将正半有限矩阵与仿射空间相结合。这种方法纳入了需求和光伏源功率的不确定性,从而增强了稳健性。稳健的 SDP 模型采用了最小-最大策略,用于最坏情况下的能源管理调度 (EMD)。在对一个 27 总线独立直流微电网进行评估时,SDP 模型在两个目标上都达到了全局最优,从而优于基于随机的算法。在不确定情况下,能量损失目标在需求不确定的情况下增加 21.6706%,在光伏源不确定的情况下增加 0.3997%,在两者都不确定的情况下增加 22.2009%。同时,二氧化碳排放目标分别增加了 11.9184%、1.8237% 和 14.0045%。在 85 节点直流网络上进行的其他模拟证实了 SDP 在最坏情况下 EMD 的功效。所有模拟都使用了 MATLAB 的 Yalmip 工具和 Mosek 求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信