Thi Nhu Thao Nguyen , Madge Martin , Christophe Arpin , Samuel Bernard , Olivier Gandrillon , Fabien Crauste
{"title":"In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics","authors":"Thi Nhu Thao Nguyen , Madge Martin , Christophe Arpin , Samuel Bernard , Olivier Gandrillon , Fabien Crauste","doi":"10.1016/j.immuno.2024.100043","DOIUrl":null,"url":null,"abstract":"<div><p>The CD8 T cell immune response operates at multiple temporal and spatial scales, including all the early complex biochemical and biomechanical processes, up to long term cell population behavior.</p><p>In order to model this response, we devised a multiscale agent-based approach using <span>Simuscale</span> software. Within each agent (cell) of our model, we introduced a gene regulatory network (GRN) based upon a piecewise deterministic Markov process formalism. Cell fate – differentiation, proliferation, death – was coupled to the state of the GRN through rule-based mechanisms. Cells interact in a 3D computational domain and signal to each other via cell–cell contacts, influencing the GRN behavior.</p><p>Results show the ability of the model to correctly capture both population behavior and molecular time-dependent evolution. We examined the impact of several parameters on molecular and population dynamics, and demonstrated the add-on value of using a multiscale approach by showing the influence of molecular parameters, particularly protein degradation rates, on the outcome of the response, such as effector and memory cell counts.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"15 ","pages":"Article 100043"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119024000132/pdfft?md5=92c4f652893809c6f3e06131e312c290&pid=1-s2.0-S2667119024000132-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunoinformatics (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667119024000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The CD8 T cell immune response operates at multiple temporal and spatial scales, including all the early complex biochemical and biomechanical processes, up to long term cell population behavior.
In order to model this response, we devised a multiscale agent-based approach using Simuscale software. Within each agent (cell) of our model, we introduced a gene regulatory network (GRN) based upon a piecewise deterministic Markov process formalism. Cell fate – differentiation, proliferation, death – was coupled to the state of the GRN through rule-based mechanisms. Cells interact in a 3D computational domain and signal to each other via cell–cell contacts, influencing the GRN behavior.
Results show the ability of the model to correctly capture both population behavior and molecular time-dependent evolution. We examined the impact of several parameters on molecular and population dynamics, and demonstrated the add-on value of using a multiscale approach by showing the influence of molecular parameters, particularly protein degradation rates, on the outcome of the response, such as effector and memory cell counts.
CD8 T 细胞免疫反应在多个时间和空间尺度上运行,包括所有早期复杂的生物化学和生物力学过程,以及长期的细胞群行为。为了模拟这种反应,我们使用 Simuscale 软件设计了一种基于多尺度代理的方法。在模型的每个代理(细胞)中,我们都引入了基于片断确定性马尔可夫过程形式主义的基因调控网络(GRN)。细胞的命运--分化、增殖、死亡--通过基于规则的机制与基因调控网络的状态相耦合。结果表明,该模型能够正确捕捉群体行为和分子随时间变化的演化。我们研究了几个参数对分子和群体动力学的影响,并通过展示分子参数(尤其是蛋白质降解率)对效应细胞和记忆细胞数量等反应结果的影响,证明了使用多尺度方法的附加价值。