Jiasong Wu , Xuan Li , Taotao Li , Fanman Meng , Youyong Kong , Guanyu Yang , Lotfi Senhadji , Huazhong Shu
{"title":"CSLNSpeech: Solving the extended speech separation problem with the help of Chinese sign language","authors":"Jiasong Wu , Xuan Li , Taotao Li , Fanman Meng , Youyong Kong , Guanyu Yang , Lotfi Senhadji , Huazhong Shu","doi":"10.1016/j.specom.2024.103131","DOIUrl":null,"url":null,"abstract":"<div><p>Previous audio-visual speech separation methods synchronize the speaker's facial movement and speech in the video to self-supervise the speech separation. In this paper, we propose a model to solve the speech separation problem assisted by both face and sign language, which we call the extended speech separation problem. We design a general deep learning network to learn the combination of three modalities, audio, face, and sign language information, to solve the speech separation problem better. We introduce a large-scale dataset named the Chinese Sign Language News Speech (CSLNSpeech) dataset to train the model, in which three modalities coexist: audio, face, and sign language. Experimental results show that the proposed model performs better and is more robust than the usual audio-visual system. In addition, the sign language modality can also be used alone to supervise speech separation tasks, and introducing sign language helps hearing-impaired people learn and communicate. Last, our model is a general speech separation framework and can achieve very competitive separation performance on two open-source audio-visual datasets. The code is available at https://github.com/iveveive/SLNSpeech</p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"165 ","pages":"Article 103131"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016763932400102X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Previous audio-visual speech separation methods synchronize the speaker's facial movement and speech in the video to self-supervise the speech separation. In this paper, we propose a model to solve the speech separation problem assisted by both face and sign language, which we call the extended speech separation problem. We design a general deep learning network to learn the combination of three modalities, audio, face, and sign language information, to solve the speech separation problem better. We introduce a large-scale dataset named the Chinese Sign Language News Speech (CSLNSpeech) dataset to train the model, in which three modalities coexist: audio, face, and sign language. Experimental results show that the proposed model performs better and is more robust than the usual audio-visual system. In addition, the sign language modality can also be used alone to supervise speech separation tasks, and introducing sign language helps hearing-impaired people learn and communicate. Last, our model is a general speech separation framework and can achieve very competitive separation performance on two open-source audio-visual datasets. The code is available at https://github.com/iveveive/SLNSpeech
期刊介绍:
Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results.
The journal''s primary objectives are:
• to present a forum for the advancement of human and human-machine speech communication science;
• to stimulate cross-fertilization between different fields of this domain;
• to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.