A pipeline with long-term “hidden leakage” will greatly reduce the stability of the ground between the pipeline and tunnel in the process of tunneling through existing pipelines in unsaturated soil. Excessive settlement of the surrounding strata and pipelines can occur when the shield excavation face approaches below a pipeline, which can lead to engineering accidents. This study is based on a self-developed model experimental system for tunneling through an existing pipeline with a double-line tunnel shield. The ground settlement and pipeline deformation caused by shield construction with small-scale and no leakages are investigated. An experimental study is conducted and the accuracy of the results is verified through a comparison with theoretical solutions. The results demonstrate that there is a significant increase in ground settlement and pipeline deformation under the influence of leakage water. It is also determined that the displacement field generated by the excavation of a double-line tunnel is not simply a superposition of the displacement field generated by the excavation of a single-line tunnel. The repeated disturbances caused by the excavation of a double-line tunnel significantly influences the redistribution of the displacement field. Additionally, a three-dimensional (3D) model of shield construction considering the influence of pipeline leakage is established. This study discusses the ground settlement and pipeline deformation patterns caused by changes in the vertical and horizontal leakage diffusion ranges. The computational results indicate that the diffusion depth of a leakage is the primary factor controlling the extent of settlement.