Equiaxed microstructure design enables strength-ductility synergy in the eutectic high-entropy alloy

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Equiaxed microstructure design enables strength-ductility synergy in the eutectic high-entropy alloy","authors":"","doi":"10.1016/j.jmrt.2024.09.064","DOIUrl":null,"url":null,"abstract":"<div><p>Eutectic high-entropy alloys (EHEAs) represent attractive candidate materials for overcoming the strength-ductility trade-off, which can be enhanced through the directional alignment of the lamellar structure along the loading direction. Here, we put forward a new route to optimize the strength-ductility synergy without orientation dependence. Through a combination of severe plastic deformation and annealing, we convert the initially lamellar structure into a dual-phase structure comprised of ultrafine equiaxed grains. The significant grain refinement improves the yield strength from 703 MPa to 1199 MPa without sacrificing any ductility. During deformation, the localized softening resistance of the achieved dual-phase microstructure avoids necking, and the intrinsic microcrack-arresting mechanism effectively improves the fracture resistance. Grain boundaries and phase boundaries provide nucleation sites for dislocations and restrict dislocation transfer while the strain incompatibility is accommodated by geometrically necessary dislocations. This work demonstrates that dual-phase alloys comprised of ultrafine equiaxed grains provide a pathway for strengthening without loss of ductility.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424020696/pdfft?md5=5266b2ca3364c02564bdb6fb6a5ba2e5&pid=1-s2.0-S2238785424020696-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424020696","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Eutectic high-entropy alloys (EHEAs) represent attractive candidate materials for overcoming the strength-ductility trade-off, which can be enhanced through the directional alignment of the lamellar structure along the loading direction. Here, we put forward a new route to optimize the strength-ductility synergy without orientation dependence. Through a combination of severe plastic deformation and annealing, we convert the initially lamellar structure into a dual-phase structure comprised of ultrafine equiaxed grains. The significant grain refinement improves the yield strength from 703 MPa to 1199 MPa without sacrificing any ductility. During deformation, the localized softening resistance of the achieved dual-phase microstructure avoids necking, and the intrinsic microcrack-arresting mechanism effectively improves the fracture resistance. Grain boundaries and phase boundaries provide nucleation sites for dislocations and restrict dislocation transfer while the strain incompatibility is accommodated by geometrically necessary dislocations. This work demonstrates that dual-phase alloys comprised of ultrafine equiaxed grains provide a pathway for strengthening without loss of ductility.

等轴微组织设计实现共晶高熵合金的强度-电导率协同效应
共晶高熵合金(EHEAs)是一种极具吸引力的候选材料,可用于克服强度-电导率之间的权衡,通过沿加载方向的层状结构定向排列可提高强度-电导率。在此,我们提出了一种优化强度-电导率协同作用而不依赖于取向的新方法。通过剧烈塑性变形和退火相结合的方法,我们将最初的片状结构转化为由超细等轴晶组成的双相结构。晶粒的显著细化将屈服强度从 703 兆帕提高到 1199 兆帕,而不会牺牲任何延展性。在变形过程中,所实现的双相微结构的局部抗软化性避免了缩颈现象,其内在的微裂纹捕捉机制有效提高了抗断裂性。晶界和相界为位错提供了成核点,并限制了位错的转移,而应变不相容性则通过几何上必要的位错来解决。这项研究表明,由超细等轴晶粒组成的双相合金可在不损失延展性的情况下实现强化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信