{"title":"Strong law of large numbers for generalized operator means","authors":"Zoltán Léka , Miklós Pálfia","doi":"10.1016/j.aim.2024.109933","DOIUrl":null,"url":null,"abstract":"<div><p>Sturm's strong law of large numbers in <span><math><mrow><mi>CAT</mi></mrow><mo>(</mo><mn>0</mn><mo>)</mo></math></span> spaces and in the Thompson metric space of positive invertible operators is not only an important theoretical generalization of the classical strong law but also serves as a root-finding algorithm in the spirit of a proximal point method with splitting. It provides an easily computable stochastic approximation based on inductive means. The purpose of this paper is to extend Sturm's strong law and its deterministic counterpart, known as the “nodice” version, to unique solutions of nonlinear operator equations that generate exponentially contracting ODE flows in the Thompson metric. This includes a broad family of so-called generalized (Karcher) operator means introduced by Pálfia in 2016. The setting of the paper also covers the framework of order-preserving flows on Thompson metric spaces, as investigated by Gaubert and Qu in 2014, and provides a generally applicable resolvent theory for this setting.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004481/pdfft?md5=d3a3a3dd73c6f07b12612b0683cffa2d&pid=1-s2.0-S0001870824004481-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004481","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sturm's strong law of large numbers in spaces and in the Thompson metric space of positive invertible operators is not only an important theoretical generalization of the classical strong law but also serves as a root-finding algorithm in the spirit of a proximal point method with splitting. It provides an easily computable stochastic approximation based on inductive means. The purpose of this paper is to extend Sturm's strong law and its deterministic counterpart, known as the “nodice” version, to unique solutions of nonlinear operator equations that generate exponentially contracting ODE flows in the Thompson metric. This includes a broad family of so-called generalized (Karcher) operator means introduced by Pálfia in 2016. The setting of the paper also covers the framework of order-preserving flows on Thompson metric spaces, as investigated by Gaubert and Qu in 2014, and provides a generally applicable resolvent theory for this setting.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.