{"title":"Global existence and Blow-up for the 1D damped compressible Euler equations with time and space dependent perturbation","authors":"Yuusuke Sugiyama","doi":"10.1016/j.na.2024.113658","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the 1D Euler equation with time and space dependent damping term <span><math><mrow><mo>−</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mi>v</mi></mrow></math></span>. It has long been known that when <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a positive constant or 0, the solution exists globally in time or blows up in finite time, respectively. In this paper, we prove that those results are invariant with respect to time and space dependent perturbations. We suppose that the coefficient <span><math><mi>a</mi></math></span> satisfies the following condition <span><span><span><math><mrow><mrow><mo>|</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are integrable functions with <span><math><mi>t</mi></math></span> and <span><math><mi>x</mi></math></span>. Under this condition, we show the global existence and the blow-up with small initial data, when <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> respectively. The key of the proof is to divide space into time-dependent regions, using characteristic curves.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"250 ","pages":"Article 113658"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001779/pdfft?md5=9f5946837a904defdc71f1e5354348c9&pid=1-s2.0-S0362546X24001779-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001779","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the 1D Euler equation with time and space dependent damping term . It has long been known that when is a positive constant or 0, the solution exists globally in time or blows up in finite time, respectively. In this paper, we prove that those results are invariant with respect to time and space dependent perturbations. We suppose that the coefficient satisfies the following condition where and and are integrable functions with and . Under this condition, we show the global existence and the blow-up with small initial data, when and respectively. The key of the proof is to divide space into time-dependent regions, using characteristic curves.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.