{"title":"StAlK: Structural Alignment based Self Knowledge distillation for Medical Image Classification","authors":"Saurabh Sharma, Atul Kumar, Jenish Monpara, Joydeep Chandra","doi":"10.1016/j.knosys.2024.112503","DOIUrl":null,"url":null,"abstract":"<div><p>In the realm of medical image analysis, where challenges like high class imbalance, inter-class similarity, and intra-class variance are prevalent, knowledge distillation has emerged as a powerful mechanism for model compression and regularization. Existing methodologies, including label smoothening, contrastive learning, and relational knowledge transfer, aim to address these challenges but exhibit limitations in effectively managing either class imbalance or intricate inter and intra-class relations within input samples. In response, this paper introduces StAlK (<strong>St</strong>ructural <strong>Al</strong>ignment based Self <strong>K</strong>nowledge distillation) for Medical Image Classification, a novel approach which leverages the alignment of complex high-order discriminative features from a mean teacher model. This alignment enhances the student model’s ability to distinguish examples across different classes. StAlK demonstrates superior performance in scenarios involving both inter and intra-class relationships and proves significantly more robust in handling class imbalance compared to baseline methods. Extensive investigations across multiple benchmark datasets reveal that StAlK achieves a substantial improvement of 6%–7% in top-1 accuracy compared to various state-of-the-art baselines. The code is available at: <span><span>https://github.com/philsaurabh/StAlK_KBS</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124011377","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of medical image analysis, where challenges like high class imbalance, inter-class similarity, and intra-class variance are prevalent, knowledge distillation has emerged as a powerful mechanism for model compression and regularization. Existing methodologies, including label smoothening, contrastive learning, and relational knowledge transfer, aim to address these challenges but exhibit limitations in effectively managing either class imbalance or intricate inter and intra-class relations within input samples. In response, this paper introduces StAlK (Structural Alignment based Self Knowledge distillation) for Medical Image Classification, a novel approach which leverages the alignment of complex high-order discriminative features from a mean teacher model. This alignment enhances the student model’s ability to distinguish examples across different classes. StAlK demonstrates superior performance in scenarios involving both inter and intra-class relationships and proves significantly more robust in handling class imbalance compared to baseline methods. Extensive investigations across multiple benchmark datasets reveal that StAlK achieves a substantial improvement of 6%–7% in top-1 accuracy compared to various state-of-the-art baselines. The code is available at: https://github.com/philsaurabh/StAlK_KBS.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.