A p -Adaptive Discontinuous Galerkin Method for Solving Second-Order Seismic Wave Equations

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiandong Huang;Dinghui Yang;Xijun He;Jin Wen;Fan Bu
{"title":"A p -Adaptive Discontinuous Galerkin Method for Solving Second-Order Seismic Wave Equations","authors":"Jiandong Huang;Dinghui Yang;Xijun He;Jin Wen;Fan Bu","doi":"10.1109/TGRS.2024.3457761","DOIUrl":null,"url":null,"abstract":"We present a p-adaptive discontinuous Galerkin (DG) approach for solving second-order elastic and acoustic wave equations. An arbitrary anisotropic medium is considered, and the first- to fourth-order polynomials are used. The second-order wave equation is first transformed into a unified first-order hyperbolic system that is suitable for the DG method. In the following, we describe the p-adaptive DG algorithm in detail. The adaptation criterion using the area indicator is adopted, and the order of polynomial applied for each subdomain in the whole computational domain is marked before time evolution. The adaptation used for wave propagation simulation is practical and flexible, and various numerical fluxes can be directly incorporated into this p-adaptive DG algorithm. Two numerical examples are used to demonstrate the performance of the proposed adaptive scheme.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10677384/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present a p-adaptive discontinuous Galerkin (DG) approach for solving second-order elastic and acoustic wave equations. An arbitrary anisotropic medium is considered, and the first- to fourth-order polynomials are used. The second-order wave equation is first transformed into a unified first-order hyperbolic system that is suitable for the DG method. In the following, we describe the p-adaptive DG algorithm in detail. The adaptation criterion using the area indicator is adopted, and the order of polynomial applied for each subdomain in the whole computational domain is marked before time evolution. The adaptation used for wave propagation simulation is practical and flexible, and various numerical fluxes can be directly incorporated into this p-adaptive DG algorithm. Two numerical examples are used to demonstrate the performance of the proposed adaptive scheme.
求解二阶地震波方程的 p 自适应非连续伽勒金方法
我们提出了一种 p 自适应非连续伽勒金(DG)方法,用于求解二阶弹性和声波方程。我们考虑了任意各向异性介质,并使用了一阶至四阶多项式。首先将二阶波方程转化为适用于 DG 方法的统一一阶双曲系统。下面,我们将详细介绍 p 自适应 DG 算法。该算法采用面积指标作为自适应准则,并在时间演化之前标出整个计算域中每个子域所应用的多项式阶数。用于波传播模拟的适应性实用而灵活,各种数值通量都可以直接纳入这种 p 自适应 DG 算法。我们用两个数值例子来演示所提出的自适应方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信