Failure mode and load prediction of steel bridge girders through 3D laser scanning and machine learning methods

ce/papers Pub Date : 2024-09-11 DOI:10.1002/cepa.3088
Georgios Tzortzinis, Jan Wittig, Angelos Filippatos, Maik Gude, Aidan Provost, Chengbo Ai, Simos Gerasimidis
{"title":"Failure mode and load prediction of steel bridge girders through 3D laser scanning and machine learning methods","authors":"Georgios Tzortzinis,&nbsp;Jan Wittig,&nbsp;Angelos Filippatos,&nbsp;Maik Gude,&nbsp;Aidan Provost,&nbsp;Chengbo Ai,&nbsp;Simos Gerasimidis","doi":"10.1002/cepa.3088","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Corrosion poses a significant threat to the longevity of steel bridges, impacting overall structural integrity. To effectively assess the structural condition of corroded steel bridges, conventional methods rely on visual inspections or single point measurements. To enhance and modernize this approach, this study introduces a novel framework integrating laser scanning data, computational models, and convolutional neural networks (CNNs). The CNN models are trained on a data set consisting of more than 1400 artificial corrosion scenarios generated by parameterizing real scan data from naturally corroded girders. This innovative method predicts the residual capacity and failure mode of corroded beam ends, achieving a low error rate of up to 3.3%. Unlike established evaluation procedures, the proposed evaluation framework directly utilizes post-processed laser scanner output, eliminating the need for feature extraction and calculations.</p>\n </div>","PeriodicalId":100223,"journal":{"name":"ce/papers","volume":"7 3-4","pages":"198-203"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.3088","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ce/papers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Corrosion poses a significant threat to the longevity of steel bridges, impacting overall structural integrity. To effectively assess the structural condition of corroded steel bridges, conventional methods rely on visual inspections or single point measurements. To enhance and modernize this approach, this study introduces a novel framework integrating laser scanning data, computational models, and convolutional neural networks (CNNs). The CNN models are trained on a data set consisting of more than 1400 artificial corrosion scenarios generated by parameterizing real scan data from naturally corroded girders. This innovative method predicts the residual capacity and failure mode of corroded beam ends, achieving a low error rate of up to 3.3%. Unlike established evaluation procedures, the proposed evaluation framework directly utilizes post-processed laser scanner output, eliminating the need for feature extraction and calculations.

通过三维激光扫描和机器学习方法预测钢桥梁的失效模式和载荷
锈蚀对钢桥的使用寿命构成重大威胁,影响整体结构的完整性。为有效评估腐蚀钢桥的结构状况,传统方法依赖于目视检查或单点测量。为了增强这种方法并使其现代化,本研究引入了一种整合激光扫描数据、计算模型和卷积神经网络(CNN)的新型框架。CNN 模型是在一个数据集上训练的,该数据集由 1400 多个人工腐蚀场景组成,这些场景是通过对自然腐蚀大梁的真实扫描数据进行参数化而生成的。这种创新方法可预测腐蚀梁端的剩余承载力和失效模式,误差率低至 3.3%。与既有的评估程序不同,所提出的评估框架直接利用激光扫描仪的后处理输出,无需进行特征提取和计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信