{"title":"Jamming-Resilient Consensus for Wireless Blockchain Networks","authors":"Yifei Zou;Meng Hou;Li Yang;Minghui Xu;Libing Wu;Dongxiao Yu;Xiuzhen Cheng","doi":"10.26599/TST.2023.9010160","DOIUrl":null,"url":null,"abstract":"As the device complexity keeps increasing, the blockchain networks have been celebrated as the cornerstone of numerous prominent platforms owing to their ability to provide distributed and immutable ledgers and data-driven autonomous organizations. The distributed consensus algorithm is the core component that directly dictates the performance and properties of blockchain networks. However, the inherent characteristics of the shared wireless medium, such as fading, interference, and openness, pose significant challenges to achieving consensus within these networks, especially in the presence of malicious jamming attacks. To cope with the severe consensus problem, in this paper, we present a distributed jamming-resilient consensus algorithm for blockchain networks in wireless environments, where the adversary can jam the communication channel by injecting jamming signals. Based on a non-binary slight jamming model, we propose a distributed four-stage algorithm to achieve consensus in the wireless blockchain network, including leader election, leader broadcast, leader aggregation, and leader announcement stages. With high probability, we prove that our jamming-resilient algorithm can ensure the validity, agreement, termination, and total order properties of consensus with the time complexity of \n<tex>$O(n)$</tex>\n. Both theoretical analyses and empirical simulations are conducted to verify the consistency and efficiency of our algorithm.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 1","pages":"262-278"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10676355","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10676355/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
As the device complexity keeps increasing, the blockchain networks have been celebrated as the cornerstone of numerous prominent platforms owing to their ability to provide distributed and immutable ledgers and data-driven autonomous organizations. The distributed consensus algorithm is the core component that directly dictates the performance and properties of blockchain networks. However, the inherent characteristics of the shared wireless medium, such as fading, interference, and openness, pose significant challenges to achieving consensus within these networks, especially in the presence of malicious jamming attacks. To cope with the severe consensus problem, in this paper, we present a distributed jamming-resilient consensus algorithm for blockchain networks in wireless environments, where the adversary can jam the communication channel by injecting jamming signals. Based on a non-binary slight jamming model, we propose a distributed four-stage algorithm to achieve consensus in the wireless blockchain network, including leader election, leader broadcast, leader aggregation, and leader announcement stages. With high probability, we prove that our jamming-resilient algorithm can ensure the validity, agreement, termination, and total order properties of consensus with the time complexity of
$O(n)$
. Both theoretical analyses and empirical simulations are conducted to verify the consistency and efficiency of our algorithm.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.