Xin Liu;Yi He;Wenxin Tai;Xovee Xu;Fan Zhou;Guangchun Luo
{"title":"Exploring the Chameleon Effect of Contextual Dynamics in Temporal Knowledge Graph for Event Prediction","authors":"Xin Liu;Yi He;Wenxin Tai;Xovee Xu;Fan Zhou;Guangchun Luo","doi":"10.26599/TST.2024.9010067","DOIUrl":null,"url":null,"abstract":"The ability to forecast future events brings great benefits for society and cyberspace in many public safety domains, such as civil unrest, pandemics and crimes. The occurrences of new events are often correlated or dependent on historical and concurrent events. Many existing studies learn event-occurring processes with sequential and structural models, which, however, suffer from inefficient and inaccurate prediction problems. To better understand the event forecasting task and characterize the occurrence of new events, we exploit the human cognitive theory from the cognitive neuroscience discipline to find available cues for algorithm design and event prediction. Motivated by the dual process theory, we propose a two-stage learning scheme for event knowledge mining and prediction. First, we screen out event candidates based on historical inherent knowledge. Then we re-rank event candidates by probing into the newest relative events. Our proposed model mimics a sociological phenomenon called “the chameleon effect” and consists of a new target attentive graph collaborative learning mechanism to ensure a better understanding of sophisticated evolution patterns associated with events. In addition, self-supervised contrastive learning is employed to alleviate the over-smoothing problem that existed in graph learning while improving the model's interpretability. Experiments show the effectiveness of our approach.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 1","pages":"433-455"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10676361","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10676361/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to forecast future events brings great benefits for society and cyberspace in many public safety domains, such as civil unrest, pandemics and crimes. The occurrences of new events are often correlated or dependent on historical and concurrent events. Many existing studies learn event-occurring processes with sequential and structural models, which, however, suffer from inefficient and inaccurate prediction problems. To better understand the event forecasting task and characterize the occurrence of new events, we exploit the human cognitive theory from the cognitive neuroscience discipline to find available cues for algorithm design and event prediction. Motivated by the dual process theory, we propose a two-stage learning scheme for event knowledge mining and prediction. First, we screen out event candidates based on historical inherent knowledge. Then we re-rank event candidates by probing into the newest relative events. Our proposed model mimics a sociological phenomenon called “the chameleon effect” and consists of a new target attentive graph collaborative learning mechanism to ensure a better understanding of sophisticated evolution patterns associated with events. In addition, self-supervised contrastive learning is employed to alleviate the over-smoothing problem that existed in graph learning while improving the model's interpretability. Experiments show the effectiveness of our approach.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.