{"title":"Diffusion Models for Medical Image Computing: A Survey","authors":"Yaqing Shi;Abudukelimu Abulizi;Hao Wang;Ke Feng;Nihemaiti Abudukelimu;Youli Su;Halidanmu Abudukelimu","doi":"10.26599/TST.2024.9010047","DOIUrl":null,"url":null,"abstract":"Diffusion models are a type of generative deep learning model that can process medical images more efficiently than traditional generative models. They have been applied to several medical image computing tasks. This paper aims to help researchers understand the advancements of diffusion models in medical image computing. It begins by describing the fundamental principles, sampling methods, and architecture of diffusion models. Subsequently, it discusses the application of diffusion models in five medical image computing tasks: image generation, modality conversion, image segmentation, image denoising, and anomaly detection. Additionally, this paper conducts fine-tuning of a large model for image generation tasks and comparative experiments between diffusion models and traditional generative models across these five tasks. The evaluation of the fine-tuned large model shows its potential for clinical applications. Comparative experiments demonstrate that diffusion models have a distinct advantage in tasks related to image generation, modality conversion, and image denoising. However, they require further optimization in image segmentation and anomaly detection tasks to match the efficacy of traditional models. Our codes are publicly available at: https://github.com/hiahub/CodeForDiffusion.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 1","pages":"357-383"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10676408","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10676408/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion models are a type of generative deep learning model that can process medical images more efficiently than traditional generative models. They have been applied to several medical image computing tasks. This paper aims to help researchers understand the advancements of diffusion models in medical image computing. It begins by describing the fundamental principles, sampling methods, and architecture of diffusion models. Subsequently, it discusses the application of diffusion models in five medical image computing tasks: image generation, modality conversion, image segmentation, image denoising, and anomaly detection. Additionally, this paper conducts fine-tuning of a large model for image generation tasks and comparative experiments between diffusion models and traditional generative models across these five tasks. The evaluation of the fine-tuned large model shows its potential for clinical applications. Comparative experiments demonstrate that diffusion models have a distinct advantage in tasks related to image generation, modality conversion, and image denoising. However, they require further optimization in image segmentation and anomaly detection tasks to match the efficacy of traditional models. Our codes are publicly available at: https://github.com/hiahub/CodeForDiffusion.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.