Synergistic Multi-Drug Combination Prediction Based on Heterogeneous Network Representation Learning with Contrastive Learning

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Xin Xi;Jinhui Yuan;Shan Lu;Jieyue He
{"title":"Synergistic Multi-Drug Combination Prediction Based on Heterogeneous Network Representation Learning with Contrastive Learning","authors":"Xin Xi;Jinhui Yuan;Shan Lu;Jieyue He","doi":"10.26599/TST.2023.9010149","DOIUrl":null,"url":null,"abstract":"The combination of multiple drugs is a significant therapeutic strategy that can enhance treatment effectiveness and reduce medication side effects. However, identifying effective synergistic drug combinations in a vast search space remains challenging. Current methods for predicting synergistic drug combinations primarily rely on calculating drug similarity based on the drug heterogeneous network or drug information, enabling the prediction of pairwise synergistic drug combinations. However, these methods not only fail to fully study the rich information in drug heterogeneous networks, but also can only predict pairwise drug combinations. To address these limitations, we present a novel Synergistic Multi-drug Combination prediction method of Western medicine based on Heterogeneous Network representation learning with Contrastive Learning, called SMC-HNCL. Specifically, two drug features are learnt from different perspectives using the drug heterogeneous network and anatomical therapeutic chemical (ATC) codes, and fused by attention mechanism. Furthermore, a group representation method based on multi-head self-attention is employed to learn representations of drug combinations, innovatively realizing the prediction of synergistic multi-drug combinations. Experimental results demonstrate that SMC-HNCL outperforms the state-of-the-art baseline methods in predicting synergistic drug pairs on two synergistic drug combination datasets and can also effectively predict synergistic multi-drug combinations.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 1","pages":"215-233"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10676350","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10676350/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of multiple drugs is a significant therapeutic strategy that can enhance treatment effectiveness and reduce medication side effects. However, identifying effective synergistic drug combinations in a vast search space remains challenging. Current methods for predicting synergistic drug combinations primarily rely on calculating drug similarity based on the drug heterogeneous network or drug information, enabling the prediction of pairwise synergistic drug combinations. However, these methods not only fail to fully study the rich information in drug heterogeneous networks, but also can only predict pairwise drug combinations. To address these limitations, we present a novel Synergistic Multi-drug Combination prediction method of Western medicine based on Heterogeneous Network representation learning with Contrastive Learning, called SMC-HNCL. Specifically, two drug features are learnt from different perspectives using the drug heterogeneous network and anatomical therapeutic chemical (ATC) codes, and fused by attention mechanism. Furthermore, a group representation method based on multi-head self-attention is employed to learn representations of drug combinations, innovatively realizing the prediction of synergistic multi-drug combinations. Experimental results demonstrate that SMC-HNCL outperforms the state-of-the-art baseline methods in predicting synergistic drug pairs on two synergistic drug combination datasets and can also effectively predict synergistic multi-drug combinations.
基于异构网络表征学习与对比学习的多种药物协同组合预测
多种药物联合使用是一种重要的治疗策略,可以提高治疗效果并减少药物副作用。然而,在广阔的搜索空间中识别有效的协同药物组合仍然具有挑战性。目前预测协同药物组合的方法主要依赖于根据药物异质性网络或药物信息计算药物相似性,从而预测成对的协同药物组合。然而,这些方法不仅无法充分研究药物异质网络中的丰富信息,而且只能预测成对的药物组合。针对这些局限性,我们提出了一种基于异构网络表征学习与对比学习的新型西药协同多药组合预测方法,称为 SMC-HNCL。具体来说,利用药物异构网络和解剖治疗化学(ATC)代码从不同角度学习两种药物特征,并通过注意机制进行融合。此外,还采用了基于多头自注意的组表示方法来学习药物组合的表示,创新性地实现了多种药物组合的协同预测。实验结果表明,在两个协同药物组合数据集上,SMC-HNCL 在预测协同药物配对方面优于最先进的基线方法,而且还能有效预测协同多药组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信