Nicole Emminghaus , Jörg Hermsdorf , Stefan Kaierle
{"title":"Oxygen-free production: Influence of silane-doped atmosphere on porosity and mechanical properties of Ti-6Al-4V processed by PBF-LB","authors":"Nicole Emminghaus , Jörg Hermsdorf , Stefan Kaierle","doi":"10.1016/j.procir.2024.08.081","DOIUrl":null,"url":null,"abstract":"<div><p>In laser-based powder bed fusion of metals (PBF-LB/M), the atmospheric residual oxygen plays a key role, particularly for highly reactive materials like Ti-6Al-4V. Oxygen concentrations present in commercial machines are still too high to effectively prevent oxidation of the powder and oxygen take-up into built parts deteriorating the part quality and mechanical properties. In this work, to reduce the residual oxygen content to a range adequate to an extreme high vacuum (XHV) while maintaining normal pressure, a silane-doped argon atmosphere (< 0.001 vol.-% silane in argon) is introduced. Ti-6Al-4V powder was processed both under a conventional argon atmosphere (< 0.01 vol.-% oxygen) and argon-silane atmosphere (< 10<sup>-20</sup> vol.-% oxygen). The influence on the resulting porosity was investigated using a central composite design. Additionally, the tensile properties were analyzed. High tensile strengths > 1290 MPa and low porosities < 0.02 %, but no significant influence of the atmosphere was found.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"124 ","pages":"Pages 110-113"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124004359/pdf?md5=8b451c6040a46f4c7d1c88c3970cb887&pid=1-s2.0-S2212827124004359-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124004359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In laser-based powder bed fusion of metals (PBF-LB/M), the atmospheric residual oxygen plays a key role, particularly for highly reactive materials like Ti-6Al-4V. Oxygen concentrations present in commercial machines are still too high to effectively prevent oxidation of the powder and oxygen take-up into built parts deteriorating the part quality and mechanical properties. In this work, to reduce the residual oxygen content to a range adequate to an extreme high vacuum (XHV) while maintaining normal pressure, a silane-doped argon atmosphere (< 0.001 vol.-% silane in argon) is introduced. Ti-6Al-4V powder was processed both under a conventional argon atmosphere (< 0.01 vol.-% oxygen) and argon-silane atmosphere (< 10-20 vol.-% oxygen). The influence on the resulting porosity was investigated using a central composite design. Additionally, the tensile properties were analyzed. High tensile strengths > 1290 MPa and low porosities < 0.02 %, but no significant influence of the atmosphere was found.