{"title":"Modeling the resilience of liner shipping network under cascading effects: Considering distance constraints and transportation time","authors":"","doi":"10.1016/j.cie.2024.110559","DOIUrl":null,"url":null,"abstract":"<div><p>The Liner Shipping Network (LSN) is a crucial component of the maritime supply chain (MSC) but remains susceptible to disruptions caused by natural disasters or emergencies, given its intricate structure and high level of interdependence. In this study, we present a novel cascading failure model that accounts for the heterogeneity of distances and transportation times between nodes, coupled with actual shipping lines. This comprehensive approach aims to thoroughly evaluate the resilience of the LSN. The study’s results reveal noteworthy variations in the cascading effects across diverse load distribution distances and transportation times. Furthermore, it delves into load distribution strategies to improve the resilience of the LSN and investigates the impact of capacity parameters on cascading effects. The results indicate that the distribution strategy proposed in this paper, integrating transportation time and redundancy levels, effectively suppresses the spread of cascading faults and improves network resilience. The outcomes of this research contribute to a deeper understanding of strategies for enhancing resilience and managing risks in shipping networks, providing valuable insights for management and decision-making in maritime operations.</p></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224006806","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The Liner Shipping Network (LSN) is a crucial component of the maritime supply chain (MSC) but remains susceptible to disruptions caused by natural disasters or emergencies, given its intricate structure and high level of interdependence. In this study, we present a novel cascading failure model that accounts for the heterogeneity of distances and transportation times between nodes, coupled with actual shipping lines. This comprehensive approach aims to thoroughly evaluate the resilience of the LSN. The study’s results reveal noteworthy variations in the cascading effects across diverse load distribution distances and transportation times. Furthermore, it delves into load distribution strategies to improve the resilience of the LSN and investigates the impact of capacity parameters on cascading effects. The results indicate that the distribution strategy proposed in this paper, integrating transportation time and redundancy levels, effectively suppresses the spread of cascading faults and improves network resilience. The outcomes of this research contribute to a deeper understanding of strategies for enhancing resilience and managing risks in shipping networks, providing valuable insights for management and decision-making in maritime operations.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.