Understanding the thermo-fluid-microstructural impact of beam shaping in Laser Powder Bed Fusion using high-fidelity multiphysics simulation

Mohamad Bayat , Olga Zinovieva , Aleksandr Zinoviev , Richard Rothfelder , Karen Scharwzkopf , Michael Schmidt , Jesper H. Hattel
{"title":"Understanding the thermo-fluid-microstructural impact of beam shaping in Laser Powder Bed Fusion using high-fidelity multiphysics simulation","authors":"Mohamad Bayat ,&nbsp;Olga Zinovieva ,&nbsp;Aleksandr Zinoviev ,&nbsp;Richard Rothfelder ,&nbsp;Karen Scharwzkopf ,&nbsp;Michael Schmidt ,&nbsp;Jesper H. Hattel","doi":"10.1016/j.procir.2024.08.133","DOIUrl":null,"url":null,"abstract":"<div><p>Beam shaping of lasers is a topic that has received relatively less attention in the context of metal additive manufacturing (MAM) processes. This technique allows for modulation or spatial alternation of the intensity profile of the laser. As the bulk of the work within MAM primarily revolves around Gaussian beam profiles, the precise impact and potential of other beam shapes is still an unanswered question. In this work a multiphysics numerical model of the laser powder bed fusion (LPBF) process of Ti6Al4V without powder is developed and the model can predict thermo-fluid-microstructural conditions. The model predictions are compared with experimental data from single-track specimens, and the comparison shows a very good agreement. It is shown that the ring spot beam profile (RSBP) results in substantially wider melt pools as compared to the ones forming using the Gaussian beam profile (GBP). The microstructural predictions show that for GBP the grains converge to the center line of the melt pool, while for ring beam profile (RBP), the grains tend to converge to a single point. Finally, the impact of different ring radii for RBP is studied and the results show that at larger ring radii, a noticeable bulge of liquid metal forms right beneath the laser beam.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124004876/pdf?md5=8677f60fd71a4d2c6c1327d9f4e25157&pid=1-s2.0-S2212827124004876-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124004876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Beam shaping of lasers is a topic that has received relatively less attention in the context of metal additive manufacturing (MAM) processes. This technique allows for modulation or spatial alternation of the intensity profile of the laser. As the bulk of the work within MAM primarily revolves around Gaussian beam profiles, the precise impact and potential of other beam shapes is still an unanswered question. In this work a multiphysics numerical model of the laser powder bed fusion (LPBF) process of Ti6Al4V without powder is developed and the model can predict thermo-fluid-microstructural conditions. The model predictions are compared with experimental data from single-track specimens, and the comparison shows a very good agreement. It is shown that the ring spot beam profile (RSBP) results in substantially wider melt pools as compared to the ones forming using the Gaussian beam profile (GBP). The microstructural predictions show that for GBP the grains converge to the center line of the melt pool, while for ring beam profile (RBP), the grains tend to converge to a single point. Finally, the impact of different ring radii for RBP is studied and the results show that at larger ring radii, a noticeable bulge of liquid metal forms right beneath the laser beam.

利用高保真多物理场仿真了解激光粉末床熔融中光束整形的热流体-微结构影响
在金属增材制造(MAM)工艺中,激光光束整形是一个关注度相对较低的课题。这种技术可以对激光的强度轮廓进行调制或空间交替。由于 MAM 的大部分工作主要围绕高斯光束轮廓展开,其他光束形状的确切影响和潜力仍是一个未解之谜。在这项工作中,开发了无粉 Ti6Al4V 激光粉末床熔化 (LPBF) 过程的多物理场数值模型,该模型可以预测热流体微结构条件。模型预测结果与单轨试样的实验数据进行了对比,对比结果显示两者非常吻合。结果表明,与使用高斯光束轮廓(GBP)形成的熔池相比,环形光斑光束轮廓(RSBP)形成的熔池要宽得多。微观结构预测显示,在 GBP 条件下,晶粒向熔池中心线靠拢,而在环形光束剖面 (RBP) 条件下,晶粒倾向于向单点靠拢。最后,研究了不同的环形半径对 RBP 的影响,结果表明,在较大的环形半径下,液态金属会在激光束正下方形成明显的隆起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信