Localized defect frequencies for Laser Metal Deposition processes

{"title":"Localized defect frequencies for Laser Metal Deposition processes","authors":"","doi":"10.1016/j.procir.2024.08.128","DOIUrl":null,"url":null,"abstract":"<div><p>Laser Metal Deposition (LMD) uses laser energy and powder material to create structures on existing components. It is capable of producing cost-effective multi-material compositions, such as reinforcing metals with ceramic particles for improved wear resistance. However, the use of dissimilar materials often leads to defects, particularly delamination. Previous studies have found a connection between these defects and specific airborne acoustic emissions (AE).</p><p>To mitigate the impact of defects, extensive optimization of process parameters and real-time process monitoring are recommended. For AE, precise localization of defects is crucial besides to time- and frequency-resolved information, especially while producing multiple components on a substrate material.</p><p>This study evaluates multi-sensor arrays for the localization of delamination defects. The research investigates the influence of localization algorithms and array patterns on the accuracy and reliability of defect localization. Experiments were conducted on a test platform with simulated acoustical events to determine the most suitable localization setup.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124004827/pdf?md5=97d382e9e8e7d8625dc9b321451c87d2&pid=1-s2.0-S2212827124004827-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124004827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Laser Metal Deposition (LMD) uses laser energy and powder material to create structures on existing components. It is capable of producing cost-effective multi-material compositions, such as reinforcing metals with ceramic particles for improved wear resistance. However, the use of dissimilar materials often leads to defects, particularly delamination. Previous studies have found a connection between these defects and specific airborne acoustic emissions (AE).

To mitigate the impact of defects, extensive optimization of process parameters and real-time process monitoring are recommended. For AE, precise localization of defects is crucial besides to time- and frequency-resolved information, especially while producing multiple components on a substrate material.

This study evaluates multi-sensor arrays for the localization of delamination defects. The research investigates the influence of localization algorithms and array patterns on the accuracy and reliability of defect localization. Experiments were conducted on a test platform with simulated acoustical events to determine the most suitable localization setup.

激光金属沉积工艺的局部缺陷频率
激光金属沉积(LMD)利用激光能量和粉末材料在现有部件上形成结构。它能够生产具有成本效益的多种材料组合,例如用陶瓷颗粒增强金属以提高耐磨性。然而,异种材料的使用往往会导致缺陷,尤其是分层。以前的研究发现,这些缺陷与特定的空气声发射(AE)之间存在联系。为了减轻缺陷的影响,建议对工艺参数进行广泛优化并实时监控工艺。对于 AE 而言,除了时间和频率分辨信息外,缺陷的精确定位也至关重要,尤其是在基底材料上生产多个部件时。研究调查了定位算法和阵列模式对缺陷定位精度和可靠性的影响。实验在模拟声学事件的测试平台上进行,以确定最合适的定位设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信