Regularizable collinear periodic solutions in the n-body problem with arbitrary masses

IF 1.5 1区 数学 Q1 MATHEMATICS
Guowei Yu
{"title":"Regularizable collinear periodic solutions in the n-body problem with arbitrary masses","authors":"Guowei Yu","doi":"10.1016/j.aim.2024.109947","DOIUrl":null,"url":null,"abstract":"<div><p>For <em>n</em>-body problem with arbitrary positive masses, we prove there are regularizable collinear periodic solutions for any ordering of the masses, going from a simultaneous binary collision to another in half of a period with half of the masses moving monotonically to the right and the other half monotonically to the left. When the masses satisfy certain equality condition, the solutions have extra symmetry. This also gives a new proof of the existence of Schubart orbit, when <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109947"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004626","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For n-body problem with arbitrary positive masses, we prove there are regularizable collinear periodic solutions for any ordering of the masses, going from a simultaneous binary collision to another in half of a period with half of the masses moving monotonically to the right and the other half monotonically to the left. When the masses satisfy certain equality condition, the solutions have extra symmetry. This also gives a new proof of the existence of Schubart orbit, when n=3.

具有任意质量的 n 体问题中可规整的共线周期解
对于具有任意正质量的 n 体问题,我们证明了对于质量的任意排序都存在可正则化的碰撞周期解,从同时发生的二元碰撞到另一组碰撞只需半个周期,其中一半质量单调地向右移动,另一半质量单调地向左移动。当质量满足某些相等条件时,解具有额外的对称性。这也给出了 n=3 时舒巴特轨道存在的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信