Density of exponentials and Perron-Frobenius operators

IF 1.5 1区 数学 Q1 MATHEMATICS
Somnath Ghosh , Debkumar Giri
{"title":"Density of exponentials and Perron-Frobenius operators","authors":"Somnath Ghosh ,&nbsp;Debkumar Giri","doi":"10.1016/j.aim.2024.109932","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the weak-star density of the linear span of the trigonometric functions<span><span><span><math><mrow><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>π</mi><mi>i</mi><mo>(</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>n</mi><mi>y</mi><mo>)</mo></mrow></msup><mo>,</mo><mspace></mspace><msubsup><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo>&lt;</mo><mi>β</mi><mo>&gt;</mo></mrow></msubsup><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>π</mi><mi>i</mi><mi>β</mi><mo>(</mo><mi>m</mi><mo>/</mo><mi>x</mi><mo>+</mo><mi>n</mi><mo>/</mo><mi>y</mi><mo>)</mo></mrow></msup><mo>;</mo><mspace></mspace></mrow><mspace></mspace><mrow><mspace></mspace><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span></span></span> for a positive real <em>β</em>. We aim to extend the results of Hedenmalm and Montes-Rodríguez (2011) <span><span>[18]</span></span> and Canto-Martín, Hedenmalm, and Montes-Rodríguez (2014) <span><span>[8]</span></span> in the plane. They have extensively studied the weak-star completeness of the <em>hyperbolic trigonometric system</em> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. This is the dual formulation of the Heisenberg uniqueness pair for (hyperbola, certain lattice-cross).</p><p>As in their work, <span><math><mi>β</mi><mo>=</mo><mn>1</mn></math></span> turns out to be the critical value. In particular, one of our main results asserts that the space spanned by the aforesaid trigonometric functions is weak-star dense in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> of the set <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>∪</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>∖</mo><mo>(</mo><mo>−</mo><mi>β</mi><mo>,</mo><mi>β</mi><mo>]</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> if and only if <span><math><mn>0</mn><mo>&lt;</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, and the corresponding pre-annihilator space has finite dimension whenever <span><math><mi>β</mi><mo>&gt;</mo><mn>1</mn></math></span>. However, for <span><math><mi>β</mi><mo>&gt;</mo><mn>1</mn></math></span>, the pre-annihilator space can be made infinite-dimensional by allowing functions with slightly bigger support than <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub></math></span>. To be precise, let <span><math><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub></math></span> be such that <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>β</mi><mo>,</mo><mi>β</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup></math></span> has positive Lebesgue measure. We prove that the weak-star closure of the linear span of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and <span><math><msubsup><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo>&lt;</mo><mi>β</mi><mo>&gt;</mo></mrow></msubsup></math></span> as <span><math><mi>m</mi><mo>,</mo><mi>n</mi></math></span> varies over <span><math><mi>Z</mi></math></span>, has infinite codimension in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub><mo>∪</mo><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>)</mo></mrow></math></span> whenever <span><math><mi>β</mi><mo>&gt;</mo><mn>1</mn></math></span>. Our proof goes via the analysis of a two-dimensional Gauss-type map and its corresponding Perron-Frobenius operator.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109932"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082400447X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the weak-star density of the linear span of the trigonometric functions{em,n(x,y)=eπi(mx+ny),em,n<β>(x,y)=eπiβ(m/x+n/y);m,nZ} for a positive real β. We aim to extend the results of Hedenmalm and Montes-Rodríguez (2011) [18] and Canto-Martín, Hedenmalm, and Montes-Rodríguez (2014) [8] in the plane. They have extensively studied the weak-star completeness of the hyperbolic trigonometric system in L(R). This is the dual formulation of the Heisenberg uniqueness pair for (hyperbola, certain lattice-cross).

As in their work, β=1 turns out to be the critical value. In particular, one of our main results asserts that the space spanned by the aforesaid trigonometric functions is weak-star dense in L of the set Θ1,β=(1,1]2(R(β,β])2 if and only if 0<β1, and the corresponding pre-annihilator space has finite dimension whenever β>1. However, for β>1, the pre-annihilator space can be made infinite-dimensional by allowing functions with slightly bigger support than Θ1,β. To be precise, let ΘβR2Θ1,β be such that (β,β]2Θβ has positive Lebesgue measure. We prove that the weak-star closure of the linear span of em,n and em,n<β> as m,n varies over Z, has infinite codimension in L(Θ1,βΘβ) whenever β>1. Our proof goes via the analysis of a two-dimensional Gauss-type map and its corresponding Perron-Frobenius operator.

指数密度和佩伦-弗罗贝尼斯算子
本文研究正实数 β 时三角函数{em,n(x,y)=eπi(mx+ny),em,n<β>(x,y)=eπiβ(m/x+n/y);m,n∈Z}线性跨度的弱星密度。我们的目标是在平面上扩展 Hedenmalm 和 Montes-Rodríguez (2011) [18] 以及 Canto-Martín、Hedenmalm 和 Montes-Rodríguez (2014) [8] 的成果。他们广泛研究了 L∞(R)中双曲三角系统的弱星完备性。与他们的研究一样,β=1 被证明是临界值。特别是,我们的主要结果之一断言,当且仅当 0<β≤1 时,上述三角函数所跨越的空间在集合 Θ1,β=(-1,1]2∪(R∖(-β,β])2 的 L∞ 中是弱星密集的,并且当 β>1 时,相应的前平稳器空间具有有限维。然而,对于 β>1,可以通过允许支持度比Θ1,β 稍大的函数来使前咝声空间无限维。确切地说,让 Θβ″⊆R2∖Θ1,β 使得 (-β,β]2∩Θβ″ 具有正的 Lebesgue 度量。我们证明,当 m,n 在 Z 上变化时,当 β>1 时,em,n 和 em,n<β> 的线性跨度的弱星闭包在 L∞(Θ1,β∪Θβ″)中具有无限的编码维度。 我们的证明是通过分析二维高斯型映射及其相应的 Perron-Frobenius 算子进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信