Large deviations for slow–fast processes on connected complete Riemannian manifolds

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Yanyan Hu , Richard C. Kraaij , Fubao Xi
{"title":"Large deviations for slow–fast processes on connected complete Riemannian manifolds","authors":"Yanyan Hu ,&nbsp;Richard C. Kraaij ,&nbsp;Fubao Xi","doi":"10.1016/j.spa.2024.104478","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a class of slow–fast processes on a connected complete Riemannian manifold <span><math><mi>M</mi></math></span>. The limiting dynamics as the scale separation goes to <span><math><mi>∞</mi></math></span> is governed by the averaging principle. Around this limit, we prove large deviation principles with an action-integral rate function for the slow process by nonlinear semigroup methods together with Hamilton–Jacobi–Bellman (HJB) equation techniques. Our main innovation is solving the comparison principle for viscosity solutions for the HJB equation on <span><math><mi>M</mi></math></span> and the construction of a variational viscosity solution for the non-smooth Hamiltonian, which lies at the heart of deriving the action integral representation for the rate function.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"178 ","pages":"Article 104478"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304414924001844/pdfft?md5=48570b477d6d4ad61f1d0e5520f39079&pid=1-s2.0-S0304414924001844-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001844","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a class of slow–fast processes on a connected complete Riemannian manifold M. The limiting dynamics as the scale separation goes to is governed by the averaging principle. Around this limit, we prove large deviation principles with an action-integral rate function for the slow process by nonlinear semigroup methods together with Hamilton–Jacobi–Bellman (HJB) equation techniques. Our main innovation is solving the comparison principle for viscosity solutions for the HJB equation on M and the construction of a variational viscosity solution for the non-smooth Hamiltonian, which lies at the heart of deriving the action integral representation for the rate function.

连通的完整黎曼流形上的慢-快过程的大偏差
我们考虑了连通的完整黎曼流形 M 上的一类慢-快过程。当尺度分离达到 ∞ 时的极限动力学受平均原理支配。在这一极限附近,我们通过非线性半群方法和汉密尔顿-雅各比-贝尔曼(HJB)方程技术,证明了慢速过程具有作用积分速率函数的大偏差原理。我们的主要创新之处在于解决了 M 上 HJB 方程粘度解的比较原理,并构建了非光滑哈密顿的变分粘度解,这是推导速率函数的作用积分表示的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信