Surface enhanced transmission Raman spectroscopy: Quantitative performances for impurity analysis in complex matrices

IF 3.1 3区 医学 Q2 CHEMISTRY, ANALYTICAL
{"title":"Surface enhanced transmission Raman spectroscopy: Quantitative performances for impurity analysis in complex matrices","authors":"","doi":"10.1016/j.jpba.2024.116469","DOIUrl":null,"url":null,"abstract":"<div><p>A transmission detection mode was investigated with SERS analyses (SETRS). A comparison between backscattering and transmission detection modes was conducted to demonstrate the feasibility of performing SETRS analyses. The impact of various parameters on the SERS signal intensity such as sample volume, lens collection optic, laser beam size and laser power were then examined. The analytical performances of SETRS were further evaluated through the quantification of an impurity (4-aminophenol) ranging from 3 to 20 µg/mL in a commercial pharmaceutical product using a total error risk-based approach. To account for expected variability of routine analysis, 9 batches of silver nanoparticles suspensions were used and experiments were performed over 5 different days and by 2 operators. Univariate spectral analysis based on a quadratic regression was compared to a multivariate approach using a partial least square regression. The presented results demonstrated that SETRS can be used to determine an impurity in a complex matrix opening new perspectives for quantitative applications.</p></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0731708524005090/pdfft?md5=056e69eef170a95924529297fe6219f2&pid=1-s2.0-S0731708524005090-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708524005090","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A transmission detection mode was investigated with SERS analyses (SETRS). A comparison between backscattering and transmission detection modes was conducted to demonstrate the feasibility of performing SETRS analyses. The impact of various parameters on the SERS signal intensity such as sample volume, lens collection optic, laser beam size and laser power were then examined. The analytical performances of SETRS were further evaluated through the quantification of an impurity (4-aminophenol) ranging from 3 to 20 µg/mL in a commercial pharmaceutical product using a total error risk-based approach. To account for expected variability of routine analysis, 9 batches of silver nanoparticles suspensions were used and experiments were performed over 5 different days and by 2 operators. Univariate spectral analysis based on a quadratic regression was compared to a multivariate approach using a partial least square regression. The presented results demonstrated that SETRS can be used to determine an impurity in a complex matrix opening new perspectives for quantitative applications.

表面增强透射拉曼光谱:用于复杂基质中杂质分析的定量性能
通过 SERS 分析(SETRS)对透射检测模式进行了研究。对背散射和透射检测模式进行了比较,以证明进行 SETRS 分析的可行性。然后研究了各种参数对 SERS 信号强度的影响,如样品体积、透镜收集光学器件、激光束尺寸和激光功率。采用基于总误差风险的方法,通过对商业药品中 3 至 20 µg/mL 的杂质(4-氨基苯酚)进行定量,进一步评估了 SETRS 的分析性能。为了考虑常规分析的预期变异性,使用了 9 个批次的银纳米颗粒悬浮液,并由 2 名操作员在 5 个不同的日子里进行了实验。将基于二次回归的单变量光谱分析与使用偏最小二乘回归的多变量方法进行了比较。结果表明,SETRS 可用于确定复杂基质中的杂质,为定量应用开辟了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
5.90%
发文量
588
审稿时长
37 days
期刊介绍: This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome. Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信