{"title":"Chemical strengthening of glass powder particles","authors":"Malcolm Schaenen , Qi Tang , Jianxiong Li , Mostafa Hassani","doi":"10.1016/j.scriptamat.2024.116368","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that chemical strengthening of glass brings the benefit of increased fracture strength. Despite extensive research on processing and mechanics at the macroscale, the effectiveness of chemical strengthening on glass elements with all three dimensions in the micrometer regime remains largely unexplored. Here, we develop a novel process for chemical strengthening of micrometer-sized spherical glass powder particles and study the fracture behavior of these particles with in-situ particle compression tests inside a scanning electron microscope. Cross-sectional microscopy and energy dispersive spectroscopy measurements confirm ion exchange and show an increase in diffusion depth with an increase in processing time and temperature. We report a higher fracture strength for chemically strengthened powder particles compared with the as-received ones. We show that the increase in fracture strength is associated to the compressive residual stress resulting from ion exchange during chemical strengthening.</p></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"255 ","pages":"Article 116368"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004032","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that chemical strengthening of glass brings the benefit of increased fracture strength. Despite extensive research on processing and mechanics at the macroscale, the effectiveness of chemical strengthening on glass elements with all three dimensions in the micrometer regime remains largely unexplored. Here, we develop a novel process for chemical strengthening of micrometer-sized spherical glass powder particles and study the fracture behavior of these particles with in-situ particle compression tests inside a scanning electron microscope. Cross-sectional microscopy and energy dispersive spectroscopy measurements confirm ion exchange and show an increase in diffusion depth with an increase in processing time and temperature. We report a higher fracture strength for chemically strengthened powder particles compared with the as-received ones. We show that the increase in fracture strength is associated to the compressive residual stress resulting from ion exchange during chemical strengthening.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.