{"title":"Maternal folic acid over-supplementation impairs cardiac function in mice offspring by inhibiting SOD1 expression.","authors":"Ke Cai,Feng Wang,Hai-Qun Shi,An-Na Shen,Rui Zhao,Hao-Ran Geng,Jia-Quan Lu,Yong-Hao Gui,Yan Shi,Jian-Yuan Zhao","doi":"10.1093/cvr/cvae203","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nFolic acid (FA) supplementation during pregnancy aims to protect foetal development. However, maternal over-supplementation of FA has been demonstrated to cause metabolic dysfunction and increase the risk of autism, retinoblastoma, and respiratory illness in the offspring. Moreover, FA supplementation reduces the risk of congenital heart disease. However, little is known about its possible adverse effects on cardiac health resulting from maternal over-supplementation. In this study, we assessed the detrimental effects of maternal FA over-supplementation on the cardiac health of the offspring.\r\n\r\nMETHODS AND RESULTS\r\nEight-week-old C57BL/6J pregnant mice were randomly divided into control and over-supplemented groups. The offspring cardiac function was assessed using echocardiography. Cardiac fibrosis was assessed in the left ventricular myocardium by histological analysis. Proteomic, protein, RNA, and DNA methylation analyses were performed by liquid chromatography-tandem mass spectrometry, western blotting, real-time quantitative PCR, and bisulfite sequencing, respectively. We found that maternal periconceptional FA over-supplementation impaired cardiac function with the decreased left ventricular ejection fraction in the offspring. Biochemical indices and tissue staining further confirmed impaired cardiac function in offspring caused by maternal FA over-supplementation. The combined proteomic, RNA expression, and DNA methylation analyses suggested that key genes involved in cardiac function were inhibited at the transcriptional level possibly due to increased DNA methylation. Among these, superoxide dismutase 1 was downregulated, and reactive oxygen species (ROS) levels increased in the mouse heart. Inhibition of ROS generation using the antioxidant N-acetylcysteine rescued the impaired cardiac function resulting from maternal FA over-supplementation.\r\n\r\nCONCLUSIONS\r\nOur study revealed that over-supplementation with FA during mouse pregnancy is detrimental to cardiac function with the decreased left ventricular ejection fraction in the offspring and provides insights into the mechanisms underlying the association between maternal FA status and health outcomes in the offspring.","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":"57 1","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae203","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Folic acid (FA) supplementation during pregnancy aims to protect foetal development. However, maternal over-supplementation of FA has been demonstrated to cause metabolic dysfunction and increase the risk of autism, retinoblastoma, and respiratory illness in the offspring. Moreover, FA supplementation reduces the risk of congenital heart disease. However, little is known about its possible adverse effects on cardiac health resulting from maternal over-supplementation. In this study, we assessed the detrimental effects of maternal FA over-supplementation on the cardiac health of the offspring.
METHODS AND RESULTS
Eight-week-old C57BL/6J pregnant mice were randomly divided into control and over-supplemented groups. The offspring cardiac function was assessed using echocardiography. Cardiac fibrosis was assessed in the left ventricular myocardium by histological analysis. Proteomic, protein, RNA, and DNA methylation analyses were performed by liquid chromatography-tandem mass spectrometry, western blotting, real-time quantitative PCR, and bisulfite sequencing, respectively. We found that maternal periconceptional FA over-supplementation impaired cardiac function with the decreased left ventricular ejection fraction in the offspring. Biochemical indices and tissue staining further confirmed impaired cardiac function in offspring caused by maternal FA over-supplementation. The combined proteomic, RNA expression, and DNA methylation analyses suggested that key genes involved in cardiac function were inhibited at the transcriptional level possibly due to increased DNA methylation. Among these, superoxide dismutase 1 was downregulated, and reactive oxygen species (ROS) levels increased in the mouse heart. Inhibition of ROS generation using the antioxidant N-acetylcysteine rescued the impaired cardiac function resulting from maternal FA over-supplementation.
CONCLUSIONS
Our study revealed that over-supplementation with FA during mouse pregnancy is detrimental to cardiac function with the decreased left ventricular ejection fraction in the offspring and provides insights into the mechanisms underlying the association between maternal FA status and health outcomes in the offspring.
期刊介绍:
Cardiovascular Research
Journal Overview:
International journal of the European Society of Cardiology
Focuses on basic and translational research in cardiology and cardiovascular biology
Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects
Submission Criteria:
Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels
Accepts clinical proof-of-concept and translational studies
Manuscripts expected to provide significant contribution to cardiovascular biology and diseases