Driver behaviour recognition based on recursive all-pair field transform time series model

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
HuiZhi Xu, ZhaoHao Xing, YongShuai Ge, DongSheng Hao, MengYing Chang
{"title":"Driver behaviour recognition based on recursive all-pair field transform time series model","authors":"HuiZhi Xu,&nbsp;ZhaoHao Xing,&nbsp;YongShuai Ge,&nbsp;DongSheng Hao,&nbsp;MengYing Chang","doi":"10.1049/itr2.12528","DOIUrl":null,"url":null,"abstract":"<p>To standardize driver behaviour and enhance transportation system safety, a dynamic driver behaviour recognition method based on the Recurrent All-Pairs Field Transforms (RAFT) temporal model is proposed. This study involves the creation of two datasets, namely, Driver-img and Driver-vid, including driver behaviour images and videos across various scenarios. These datasets are subject to preprocessing using RAFT optical flow techniques to enhance the cognitive process of the network. This approach employs a two-stage temporal model for driver behaviour recognition. In the initial stage, the MobileNet network is optimized and the GYY module is introduced, which includes residuals and global average pooling layers, thereby enhancing the network's feature extraction capabilities. In the subsequent stage, a bidirectional GRU network is constructed to learn driver behaviour video features with temporal information. Additionally, a method for compressing and padding video frames is proposed, which serves as input to the GRU network and enables intent prediction 0.2 s prior to driver actions. Model performance is assessed through accuracy, recall, and <i>F</i>1 score, with experimental results indicating that RAFT preprocessing enhances accuracy, reduces training time, and improves overall model stability, facilitating the recognition of driver behaviour intent.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 9","pages":"1559-1573"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12528","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12528","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To standardize driver behaviour and enhance transportation system safety, a dynamic driver behaviour recognition method based on the Recurrent All-Pairs Field Transforms (RAFT) temporal model is proposed. This study involves the creation of two datasets, namely, Driver-img and Driver-vid, including driver behaviour images and videos across various scenarios. These datasets are subject to preprocessing using RAFT optical flow techniques to enhance the cognitive process of the network. This approach employs a two-stage temporal model for driver behaviour recognition. In the initial stage, the MobileNet network is optimized and the GYY module is introduced, which includes residuals and global average pooling layers, thereby enhancing the network's feature extraction capabilities. In the subsequent stage, a bidirectional GRU network is constructed to learn driver behaviour video features with temporal information. Additionally, a method for compressing and padding video frames is proposed, which serves as input to the GRU network and enables intent prediction 0.2 s prior to driver actions. Model performance is assessed through accuracy, recall, and F1 score, with experimental results indicating that RAFT preprocessing enhances accuracy, reduces training time, and improves overall model stability, facilitating the recognition of driver behaviour intent.

Abstract Image

基于递归全对场变换时间序列模型的驾驶员行为识别
为了规范驾驶员行为并提高交通系统的安全性,本文提出了一种基于递归全对场变换(RAFT)时序模型的动态驾驶员行为识别方法。本研究涉及创建两个数据集,即 Driver-img 和 Driver-vid,其中包括各种场景下的驾驶员行为图像和视频。使用 RAFT 光流技术对这些数据集进行预处理,以增强网络的认知过程。该方法采用两阶段时间模型进行驾驶员行为识别。在初始阶段,对 MobileNet 网络进行优化,并引入 GYY 模块,其中包括残差层和全局平均池层,从而增强网络的特征提取能力。在随后的阶段,构建了一个双向 GRU 网络来学习具有时间信息的驾驶员行为视频特征。此外,还提出了一种压缩和填充视频帧的方法,作为 GRU 网络的输入,可在驾驶员行动前 0.2 秒进行意图预测。实验结果表明,RAFT 预处理提高了准确性,缩短了训练时间,并提高了模型的整体稳定性,从而促进了对驾驶员行为意图的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信