A space and time fixed point mesh adaptation method

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Bastien Sauvage , Frédéric Alauzet , Alain Dervieux
{"title":"A space and time fixed point mesh adaptation method","authors":"Bastien Sauvage ,&nbsp;Frédéric Alauzet ,&nbsp;Alain Dervieux","doi":"10.1016/j.jcp.2024.113389","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a space-time metric-based approach for the best set of spatial meshes <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> combined with the best set time step <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> of space-time complexity <span><math><msub><mrow><mi>N</mi></mrow><mrow><mtext>st</mtext></mrow></msub></math></span> for the calculation of transient flows with implicit time advancing. Both types of error estimate, feature-based and goal-oriented, are considered for the compressible RANS equations. The case of a mesh which is adapted at each time step, and the case where the mesh is constant during a time subinterval of the whole simulation are theoretically analyzed. These space-time error estimates are then considered inside a Global Transient Fixed Point mesh adaptation algorithm. Applications to flow with vortex shedding past a cylinder are then described.</p></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124006375","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a space-time metric-based approach for the best set of spatial meshes Mopt(t) combined with the best set time step τopt(t) of space-time complexity Nst for the calculation of transient flows with implicit time advancing. Both types of error estimate, feature-based and goal-oriented, are considered for the compressible RANS equations. The case of a mesh which is adapted at each time step, and the case where the mesh is constant during a time subinterval of the whole simulation are theoretically analyzed. These space-time error estimates are then considered inside a Global Transient Fixed Point mesh adaptation algorithm. Applications to flow with vortex shedding past a cylinder are then described.

时空定点网格适应方法
我们介绍了一种基于时空度量的方法,即最佳空间网格集 Mopt(t)与时空复杂度 Nst 的最佳时间步长τopt(t)相结合,用于计算隐式时间推进的瞬态流。对于可压缩 RANS 方程,考虑了基于特征和面向目标的两种误差估计。从理论上分析了在每个时间步长内调整网格的情况,以及在整个模拟的一个时间子区间内网格不变的情况。然后在全局瞬态固定点网格适应算法中考虑了这些时空误差估计。然后描述了对经过圆柱体的带有涡流脱落的流动的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信