Pascal Jutras-Dubé , Mohammad B. Al-Khasawneh , Zhichao Yang , Javier Bas , Fabian Bastin , Cinzia Cirillo
{"title":"Copula-based transferable models for synthetic population generation","authors":"Pascal Jutras-Dubé , Mohammad B. Al-Khasawneh , Zhichao Yang , Javier Bas , Fabian Bastin , Cinzia Cirillo","doi":"10.1016/j.trc.2024.104830","DOIUrl":null,"url":null,"abstract":"<div><p>Population synthesis involves generating synthetic yet realistic representations of a target population of micro-agents for behavioral modeling and simulation. Traditional methods, often reliant on target population samples, such as census data or travel surveys, face limitations due to high costs and small sample sizes, particularly at smaller geographical scales. We propose a novel framework based on copulas to generate synthetic data for target populations where only empirical marginal distributions are known. This method utilizes samples from different populations with similar marginal dependencies, introduces a spatial component into population synthesis, and considers various information sources for more realistic generators. Concretely, the process involves normalizing the data and treating it as realizations of a given copula, and then training a generative model before incorporating the information on the marginals of the target population. Utilizing American Community Survey data, we assess our framework’s performance through standardized root mean squared error (SRMSE) and so-called sampled zeros. We focus on its capacity to transfer a model learned from one population to another. Our experiments include transfer tests between regions at the same geographical level as well as to lower geographical levels, hence evaluating the framework’s adaptability in varied spatial contexts. We compare Bayesian Networks, Variational Autoencoders, and Generative Adversarial Networks, both individually and combined with our copula framework. Results show that the copula enhances machine learning methods in matching the marginals of the reference data. Furthermore, it consistently surpasses Iterative Proportional Fitting in terms of SRMSE in the transferability experiments, while introducing unique observations not found in the original training sample.</p></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"169 ","pages":"Article 104830"},"PeriodicalIF":7.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24003516","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Population synthesis involves generating synthetic yet realistic representations of a target population of micro-agents for behavioral modeling and simulation. Traditional methods, often reliant on target population samples, such as census data or travel surveys, face limitations due to high costs and small sample sizes, particularly at smaller geographical scales. We propose a novel framework based on copulas to generate synthetic data for target populations where only empirical marginal distributions are known. This method utilizes samples from different populations with similar marginal dependencies, introduces a spatial component into population synthesis, and considers various information sources for more realistic generators. Concretely, the process involves normalizing the data and treating it as realizations of a given copula, and then training a generative model before incorporating the information on the marginals of the target population. Utilizing American Community Survey data, we assess our framework’s performance through standardized root mean squared error (SRMSE) and so-called sampled zeros. We focus on its capacity to transfer a model learned from one population to another. Our experiments include transfer tests between regions at the same geographical level as well as to lower geographical levels, hence evaluating the framework’s adaptability in varied spatial contexts. We compare Bayesian Networks, Variational Autoencoders, and Generative Adversarial Networks, both individually and combined with our copula framework. Results show that the copula enhances machine learning methods in matching the marginals of the reference data. Furthermore, it consistently surpasses Iterative Proportional Fitting in terms of SRMSE in the transferability experiments, while introducing unique observations not found in the original training sample.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.