Enhancing vehicular NOMA communication security through reconfigurable intelligent surfaces

IF 5.8 2区 计算机科学 Q1 TELECOMMUNICATIONS
{"title":"Enhancing vehicular NOMA communication security through reconfigurable intelligent surfaces","authors":"","doi":"10.1016/j.vehcom.2024.100841","DOIUrl":null,"url":null,"abstract":"<div><p>Physical layer security (PLS) aims to ensure the confidentiality and authenticity of transmitted data by capitalizing on the inherent randomness of wireless channels. Owing to the popularity of intelligent transportation systems (ITSs), PLS research has sparked renewed interest in the wireless research community. This paper investigates the performance of secure communication in the context of a vehicle-to-vehicle (V2V) communication scenario by employing a reconfigurable intelligent surface (RIS). Further, we introduce the concept of non-orthogonal multiple access (NOMA) to reduce latency and improve communication efficiency in V2V networks. This study aims to comprehensively analyze secrecy performance, encompassing parameters like average secrecy capacity (ASC), secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNZSC). Our research aims to highlight the efficacy of RIS in providing secure and reliable communication within V2V NOMA networks. Ultimately, our study contributes to advancing secure communication protocols in intelligent transportation systems.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214209624001165/pdfft?md5=f26c6e9ea8dc5acc8055c994ba1cd365&pid=1-s2.0-S2214209624001165-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624001165","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Physical layer security (PLS) aims to ensure the confidentiality and authenticity of transmitted data by capitalizing on the inherent randomness of wireless channels. Owing to the popularity of intelligent transportation systems (ITSs), PLS research has sparked renewed interest in the wireless research community. This paper investigates the performance of secure communication in the context of a vehicle-to-vehicle (V2V) communication scenario by employing a reconfigurable intelligent surface (RIS). Further, we introduce the concept of non-orthogonal multiple access (NOMA) to reduce latency and improve communication efficiency in V2V networks. This study aims to comprehensively analyze secrecy performance, encompassing parameters like average secrecy capacity (ASC), secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNZSC). Our research aims to highlight the efficacy of RIS in providing secure and reliable communication within V2V NOMA networks. Ultimately, our study contributes to advancing secure communication protocols in intelligent transportation systems.

通过可重新配置的智能表面加强车辆 NOMA 通信安全
物理层安全(PLS)旨在利用无线信道固有的随机性,确保传输数据的保密性和真实性。由于智能交通系统(ITS)的普及,物理层安全研究再次引发了无线研究界的兴趣。本文通过采用可重构智能表面(RIS),研究了车对车(V2V)通信场景下的安全通信性能。此外,我们还引入了非正交多址接入(NOMA)的概念,以减少 V2V 网络中的延迟并提高通信效率。本研究旨在全面分析保密性能,包括平均保密容量(ASC)、保密中断概率(SOP)和非零保密容量概率(PNZSC)等参数。我们的研究旨在强调 RIS 在 V2V NOMA 网络中提供安全可靠通信的功效。最终,我们的研究将有助于推动智能交通系统中安全通信协议的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vehicular Communications
Vehicular Communications Engineering-Electrical and Electronic Engineering
CiteScore
12.70
自引率
10.40%
发文量
88
审稿时长
62 days
期刊介绍: Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier. The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications: Vehicle to vehicle and vehicle to infrastructure communications Channel modelling, modulating and coding Congestion Control and scalability issues Protocol design, testing and verification Routing in vehicular networks Security issues and countermeasures Deployment and field testing Reducing energy consumption and enhancing safety of vehicles Wireless in–car networks Data collection and dissemination methods Mobility and handover issues Safety and driver assistance applications UAV Underwater communications Autonomous cooperative driving Social networks Internet of vehicles Standardization of protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信