{"title":"Optimal control strategies in a generic class of bacterial growth models with multiple substrates","authors":"Agustín G. Yabo","doi":"10.1016/j.automatica.2024.111881","DOIUrl":null,"url":null,"abstract":"<div><p>Optimal control strategies are studied through the application of the Pontryagin’s Maximum Principle for a class of non-linear differential systems that are commonly used to describe resource allocation during bacterial growth. The approach is inspired by the optimality of numerous regulatory mechanisms in bacterial cells. In this context, we aim to predict natural feedback loops as optimal control solutions so as to gain insight on the behavior of microorganisms from a control-theoretical perspective. The problem is posed in terms of a control function <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> representing the fraction of the cell dedicated to protein synthesis, and <span><math><mi>n</mi></math></span> additional controls <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> modeling the fraction of the cell responsible for the consumption of the available nutrient sources in the medium. By studying the necessary conditions for optimality, it is possible to prove that the solutions follow a bang–singular–bang structure, and that they are characterized by a sequential uptake pattern known as diauxic growth, which prioritizes the consumption of richer substrates over poor nutrients. Numerical simulations obtained through an optimal control solver confirm the theoretical results. Finally, we provide an application to batch cultivation of E. coli growing on glucose and lactose. For that, we propose a state feedback law that is based on the optimal control, and we calibrate the obtained closed-loop model to experimental data.</p></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0005109824003753/pdfft?md5=4b5a18dc60bfd905fc283f6a25f01d94&pid=1-s2.0-S0005109824003753-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824003753","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Optimal control strategies are studied through the application of the Pontryagin’s Maximum Principle for a class of non-linear differential systems that are commonly used to describe resource allocation during bacterial growth. The approach is inspired by the optimality of numerous regulatory mechanisms in bacterial cells. In this context, we aim to predict natural feedback loops as optimal control solutions so as to gain insight on the behavior of microorganisms from a control-theoretical perspective. The problem is posed in terms of a control function representing the fraction of the cell dedicated to protein synthesis, and additional controls modeling the fraction of the cell responsible for the consumption of the available nutrient sources in the medium. By studying the necessary conditions for optimality, it is possible to prove that the solutions follow a bang–singular–bang structure, and that they are characterized by a sequential uptake pattern known as diauxic growth, which prioritizes the consumption of richer substrates over poor nutrients. Numerical simulations obtained through an optimal control solver confirm the theoretical results. Finally, we provide an application to batch cultivation of E. coli growing on glucose and lactose. For that, we propose a state feedback law that is based on the optimal control, and we calibrate the obtained closed-loop model to experimental data.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.