{"title":"Distributed continuous-time time-varying optimization for networked Lagrangian systems with quadratic cost functions","authors":"Yong Ding , Hanlei Wang , Wei Ren","doi":"10.1016/j.automatica.2024.111882","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the distributed time-varying optimization problem is investigated for networked Lagrangian systems with parametric uncertainties. Usually, in the literature, to address some distributed control problems for nonlinear systems, a networked virtual system is constructed, and a tracking algorithm is designed such that the agents’ physical states track the virtual states. It is worth pointing out that such an idea requires the exchange of the virtual states and hence necessitates communication among the group. In addition, due to the complexities of the Lagrangian dynamics and the distributed time-varying optimization problem, there exist significant challenges. This paper proposes distributed time-varying optimization algorithms that achieve zero optimum-tracking errors for the networked Lagrangian agents without the communication requirement. The main idea behind the proposed algorithms is to construct a reference system for each agent to generate a reference velocity using absolute and relative physical state measurements with no exchange of virtual states needed, and to design adaptive controllers for Lagrangian systems such that the physical states are able to track the reference velocities and hence the optimal trajectory. The algorithms introduce mutual feedback between the reference systems and the local controllers via physical states/measurements and are amenable to implementation via local onboard sensing in a communication unfriendly environment. Specifically, first, a base algorithm is proposed to solve the distributed time-varying optimization problem for networked Lagrangian systems under switching graphs. Then, based on the base algorithm, a continuous function is introduced to approximate the signum function, forming a continuous distributed optimization algorithm and hence removing the chattering. Such a continuous algorithm is convergent with bounded ultimate optimum-tracking errors, which are proportion to approximation errors. Finally, numerical simulations are provided to illustrate the validity of the proposed algorithms.</p></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111882"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0005109824003765/pdfft?md5=268cd3ac8c9394f35de6171bde25b9be&pid=1-s2.0-S0005109824003765-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824003765","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the distributed time-varying optimization problem is investigated for networked Lagrangian systems with parametric uncertainties. Usually, in the literature, to address some distributed control problems for nonlinear systems, a networked virtual system is constructed, and a tracking algorithm is designed such that the agents’ physical states track the virtual states. It is worth pointing out that such an idea requires the exchange of the virtual states and hence necessitates communication among the group. In addition, due to the complexities of the Lagrangian dynamics and the distributed time-varying optimization problem, there exist significant challenges. This paper proposes distributed time-varying optimization algorithms that achieve zero optimum-tracking errors for the networked Lagrangian agents without the communication requirement. The main idea behind the proposed algorithms is to construct a reference system for each agent to generate a reference velocity using absolute and relative physical state measurements with no exchange of virtual states needed, and to design adaptive controllers for Lagrangian systems such that the physical states are able to track the reference velocities and hence the optimal trajectory. The algorithms introduce mutual feedback between the reference systems and the local controllers via physical states/measurements and are amenable to implementation via local onboard sensing in a communication unfriendly environment. Specifically, first, a base algorithm is proposed to solve the distributed time-varying optimization problem for networked Lagrangian systems under switching graphs. Then, based on the base algorithm, a continuous function is introduced to approximate the signum function, forming a continuous distributed optimization algorithm and hence removing the chattering. Such a continuous algorithm is convergent with bounded ultimate optimum-tracking errors, which are proportion to approximation errors. Finally, numerical simulations are provided to illustrate the validity of the proposed algorithms.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.