Xiongtao Shi , Yanjie Li , Chenglong Du , Chaoyang Chen , Guangdeng Zong , Weihua Gui
{"title":"Reinforcement learning-based optimal control for Markov jump systems with completely unknown dynamics","authors":"Xiongtao Shi , Yanjie Li , Chenglong Du , Chaoyang Chen , Guangdeng Zong , Weihua Gui","doi":"10.1016/j.automatica.2024.111886","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the optimal control problem of a class of unknown Markov jump systems (MJSs) is investigated via the parallel policy iteration-based reinforcement learning (PPI-RL) algorithms. First, by solving the linear parallel Lyapunov equation, a model-based PPI-RL algorithm is studied to learn the solution of nonlinear coupled algebraic Riccati equation (CARE) of MJSs with known dynamics, thereby updating the optimal control gain. Then, a novel partially model-free PPI-RL algorithm is proposed for the scenario that the dynamics of the MJS is partially unknown, in which the optimal solution of CARE is learned via the mixed input–output data of all modes. Furthermore, for the MJS with completely unknown dynamics, a completely model-free PPI-RL algorithm is developed to get the optimal control gain by removing the dependence of model information in the process of solving the optimal solution of CARE. It is proved that the proposed PPI-RL algorithms converge to the unique optimal solution of CARE for MJSs with known, partially unknown, and completely unknown dynamics, respectively. Finally, simulation results are illustrated to show the feasibility and effectiveness of the PPI-RL algorithms.</p></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111886"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0005109824003807/pdfft?md5=884f0aad8f5e53b8556ad35ca7c525f6&pid=1-s2.0-S0005109824003807-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824003807","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the optimal control problem of a class of unknown Markov jump systems (MJSs) is investigated via the parallel policy iteration-based reinforcement learning (PPI-RL) algorithms. First, by solving the linear parallel Lyapunov equation, a model-based PPI-RL algorithm is studied to learn the solution of nonlinear coupled algebraic Riccati equation (CARE) of MJSs with known dynamics, thereby updating the optimal control gain. Then, a novel partially model-free PPI-RL algorithm is proposed for the scenario that the dynamics of the MJS is partially unknown, in which the optimal solution of CARE is learned via the mixed input–output data of all modes. Furthermore, for the MJS with completely unknown dynamics, a completely model-free PPI-RL algorithm is developed to get the optimal control gain by removing the dependence of model information in the process of solving the optimal solution of CARE. It is proved that the proposed PPI-RL algorithms converge to the unique optimal solution of CARE for MJSs with known, partially unknown, and completely unknown dynamics, respectively. Finally, simulation results are illustrated to show the feasibility and effectiveness of the PPI-RL algorithms.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.