{"title":"A data-driven approach to quantify track buckling strength through the development and application of a Track Strength Index (TSI)","authors":"","doi":"10.1016/j.trgeo.2024.101359","DOIUrl":null,"url":null,"abstract":"<div><p>Railroads are increasingly adopting advanced technologies to enhance safety and state of good repair of their track infrastructure, some of which employ artificial intelligence-based inspection methods. The objectivity of these inspection techniques, along with their detailed measuring capabilities, has created opportunities for railroads to improve both inspection and operational efficiency. This is achieved through more frequent and precise track data collections and technical data aggregations. This paper explores the potential of these track inspection methods to address one of the few drawbacks of continuous welded rail (CWR): track buckling. While track buckling mechanics and prevention have been the subject of numerous studies, the need for a practical and objective method to assess resistance to buckling remains. Numerous track health indices for geometry parameters and some for railway components have been developed and utilized in various applications. Yet, the opportunity exists to develop a metric that combines geometric parameters with the condition levels of railway components, particularly designed to quantify the resistance of track to buckling. Such a holistic view of the track and network-wide time series analyses of the proposed metric demonstrate whether the buckling resistance improves, remains in a steady state, or declines. In this study, a sensitivity analysis conducted using CWR-Risk software identified misalignment amplitude, track curvature, lateral resistance, torsional resistance, and longitudinal resistance as the main factors contributing to buckling resistance. Based on the sensitivity study and with a focus on the capacity side of the track buckling equation, a methodology was proposed for converting inspection data into 10-point scales that were combined through weighted averaging into a single Track Strength Index (TSI) to quantitatively assess the resistance to buckling at a track-system level. The influence of ballast condition on TSI output was evaluated using 15 ballast configuration scenarios, ensuring that the index accurately reflects ballast deficiencies in a proportionate manner. Lastly, the proposed metric was tested leveraging revenue service data collected from a Class I railroad mainline in the United States.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214391224001806/pdfft?md5=31f13c7b808e0f1517f15d4098cc9f71&pid=1-s2.0-S2214391224001806-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001806","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Railroads are increasingly adopting advanced technologies to enhance safety and state of good repair of their track infrastructure, some of which employ artificial intelligence-based inspection methods. The objectivity of these inspection techniques, along with their detailed measuring capabilities, has created opportunities for railroads to improve both inspection and operational efficiency. This is achieved through more frequent and precise track data collections and technical data aggregations. This paper explores the potential of these track inspection methods to address one of the few drawbacks of continuous welded rail (CWR): track buckling. While track buckling mechanics and prevention have been the subject of numerous studies, the need for a practical and objective method to assess resistance to buckling remains. Numerous track health indices for geometry parameters and some for railway components have been developed and utilized in various applications. Yet, the opportunity exists to develop a metric that combines geometric parameters with the condition levels of railway components, particularly designed to quantify the resistance of track to buckling. Such a holistic view of the track and network-wide time series analyses of the proposed metric demonstrate whether the buckling resistance improves, remains in a steady state, or declines. In this study, a sensitivity analysis conducted using CWR-Risk software identified misalignment amplitude, track curvature, lateral resistance, torsional resistance, and longitudinal resistance as the main factors contributing to buckling resistance. Based on the sensitivity study and with a focus on the capacity side of the track buckling equation, a methodology was proposed for converting inspection data into 10-point scales that were combined through weighted averaging into a single Track Strength Index (TSI) to quantitatively assess the resistance to buckling at a track-system level. The influence of ballast condition on TSI output was evaluated using 15 ballast configuration scenarios, ensuring that the index accurately reflects ballast deficiencies in a proportionate manner. Lastly, the proposed metric was tested leveraging revenue service data collected from a Class I railroad mainline in the United States.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.